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Abstract. We describe a new method to constructivize proofs based
on Herbrand disjunctions by giving a practically effective algorithm that
converts (some) classical first-order proofs into intuitionistic proofs. To-
gether with an automated classical first-order theorem prover such a
method yields an (incomplete) automated theorem prover for intuition-
istic logic. Our implementation of this prover approach, Slakje, performs
competitively on the ILTP benchmark suite for intuitionistic provers: it
solves 1674 out of 2670 problems (1290 proofs and 384 claims of non-
provability) with Vampire as a backend, including 800 previously un-
solved problems.

1 Introduction

Intuitionistic logic is a logic of particular practical importance. Many interactive
theorem provers use intuitionistic logic as a foundation, like Coq [3], Agda [6], or
Lean [26]. In some foundational frameworks the law of excluded middle is even
provably false, such as in homotopy type theory1 [36]. Automating first-order
intuitionistic logic thus has immediate practical applications in these systems.

That intuitionistic proofs are often similar to classical proofs of the same for-
mula is a folklore observation, stated e.g. by Otten [29]. Hence it is reasonable to
approach automated theorem proving in intuitionistic logic by adapting proofs
from classical theorem provers. This general idea of proof constructivization has
recently been described and evaluated by Cauderlier [8] and Gilbert [16]; both
transform detailed proofs (natural deduction resp. sequent calculus) using es-
sentially local rewriting operations. However their constructivization procedures
are hard to apply to state-of-the-art automated theorem provers as these provers
typically do not produce sequent calculus or natural deduction proofs.

Integrations of (classical) first-order theorem provers in higher-order theorem
provers—so-called “hammers”—typically use a similar general approach: pass-
ing a (sometimes even unsound) translation of the input problem to a classical
prover, and then reconstructing the proof in the higher-order system [5,10,18]. In
this framework, proof constructivization also uses an unsound translation: one
that maps each formula to itself (but reinterprets it in a different logic).

1 Considering of course the law of excluded middle for arbitrary types, not just mere
propositions.
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We present a new and different proof constructivization method based on
Herbrand disjunctions. Herbrand’s theorem [17,7] captures the insight that the
classical validity of a quantified formula is characterized by the existence of a
tautological finite set of quantifier-free instances. In its simplest case, the validity
of a purely existential formula ∃x ϕ(x) is characterized by the existence of a
tautological disjunction of instances ϕ(t1)∨ · · · ∨ϕ(tn), a Herbrand disjunction.
We say that ti is a quantifier instance term for ∃xϕ(x). To store such Herbrand
disjunctions for general non-prenex formulas, we use an elegant data structure
called expansion trees, which also generalize this result to simply-typed higher-
order logic in the form of elementary type theory [23].

– We describe a new and effective procedure to constructivize classical proofs
into intuitionistic proofs based on Herbrand disjunctions.

– We have implemented the intuitionistic first-order theorem prover Slakje
based on this procedure using the GAPT [15] system for proof theory, and
show that it performs competitively on the ILTP benchmark suite.

– We show that the prover is complete on a practically relevant class of for-
mulas.

We start out in Section 2 by giving an overview of the Slakje prover. In
the following sections we explain the technical details. Expansion trees, the cen-
tral data structure to represent classical proofs, are introduced in Section 3. In
Section 4 we describe the SAT-based procedure that constructivizes expansion
proofs and produces intuitionistic proofs. Key optimizations are discussed in Sec-
tion 5, and completeness for a large class of problems including Horn problems
and purely equational problems is shown in Section 6. Finally, we evaluate the
prover on the ILTP benchmark suite in Section 7.

2 Overview of the Prover

We consider intuitionistic first-order logic with the connectives→,∧,∨,⊥,> and
the quantifiers ∃,∀. The abbreviation ¬ϕ stands for ϕ → ⊥. Let us first give a
short overview of the resulting intuitionistic first-order prover. Given an input
formula ϕ, it proceeds in three big phases:

1. Call classical prover (e.g. Vampire [19]) with ϕ2

(if the result is “satisfiable”, immediately return “non-theorem”)
2. Convert proof output into (classical) expansion proof
3. Produce intuitionistic proof from expansion proof

The only phase that is specific to this prover is the third one; in our im-
plementation, phases 1 and 2 are part of the general-purpose external prover
interface that produces expansion proofs available in the GAPT [15,13] frame-
work. We use expansion proofs as a compact intermediate format for classical

2 Internally, Vampire, and in general most classical provers then refute ¬ϕ.
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proofs, which only contain the quantifier instance terms but not the propositional
reasoning in the proof. Many automated theorem proving paradigms generate
proofs that directly contain the same essential data as expansion proofs, e.g. the
terms used for heuristic instantiation in SMT solvers, or the global substitution
used in tableaux or connection proofs. Resolution and superposition proofs also
contain this information after grounding. This direct correspondence applies for
formulas in clause normal form; in the general case we also need to treat strong
quantifiers, which are Skolemized in classical provers.

While there are normal forms similar to CNF in intuitionistic logic which
avoid Skolemization [24,25], it makes little sense to use them here: the main dif-
ference is that they produce a different kind of “clauses”, such as (∀xP (x, y))→
Q(y), which we cannot pass to classical theorem provers. But the use of Skolem-
ization as a preprocessing step is (in general) not sound in intuitionistic logic:
for example (¬∀x P (x)) → ∃x ¬P (x) is an intuitionistic non-theorem, while
its Skolemization (¬P (c)) → ∃x ¬P (x) is a theorem. Hence we use deskolem-
ization [1] to eliminate Skolemization from classical proofs (which is a natural
operation on expansion proofs).

The way we construct an intuitionistic proof from the expansion proof is
by a bottom-up proof construction in an intuitionistic multi-succedent sequent
calculus. We make use of a SAT solver to organize this proof construction. While
SAT solvers—as the name implies—can decide satisfiability of a propositional
formula ϕ in classical logic, only the part where we need to prove ϕ→

∧
C for

the CNF
∧
C requires classical logic. If the CNF

∧
C is unsatisfiable, then

∧
C

is already provable in intuitionistic logic: proofs produced by SAT solvers can be
translated to resolution proofs; and resolution is just the cut inference, which is
sound for intuitionistic logic. (See also Theorem 4 for a different explanation.)
In our setting, a SAT solver hence decides the following question: “is the sequent
Γ ` ∆ derivable from a set of sequents T using only cut and weakening?”

If the SAT solver cannot derive this sequent, we obtain an assignment which
corresponds to a leaf in this bottom-up proof construction and we apply the
inferences that cannot be encoded as clauses (e.g. the right-rule for implication).
This technique of using SAT solvers to support intuitionistic reasoning has al-
ready been successfully used in the Intuit [9] prover, albeit only for propositional
logic, and their implementation does not produce proofs.

3 Expansion Proofs

The proof formalism of expansion trees was introduced in [23] to describe Her-
brand disjunctions in classical higher-order logic. In first-order logic, they pro-
vide an elegant data structure to describe Herbrand disjunctions for non-prenex
formulas, storing the quantifier instance terms. The central idea is that each
expansion tree E comes with a shallow formula sh(E) and a quantifier-free deep
formula dp(E). The deep formula corresponds to the quantifier-free Herbrand
disjunction, and the shallow formula is the quantified formula that we want to
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prove. If the deep formula is a quasi-tautology (a tautology modulo equality),
then the shallow formula is valid in classical logic.

Expansion trees have two polarities, − and +. We write −p for the inverse
polarity of p, i.e. −− = + and −+ = −. Polarity only changes on the left side of
the connective→. This distinction is important since we must instantiate positive
occurrences of ∀ (resp. negative occurrences of ∃, called “strong quantifiers”)
with an eigenvariable, while we can instantiate the negative ones with whatever
terms we want (“weak quantifiers”). An atom is a predicate such as P (x, y) or
an equality; the formulas >,⊥ are not atoms.

Definition 1. The set ETp(ϕ) of expansion trees with polarity p ∈ {+,−} and
shallow formula ϕ is inductively defined as the smallest set containing:

A atom/>/⊥
Ap ∈ ETp(A)

E1 ∈ ETp(ϕ) E2 ∈ ETp(ψ)

E1 ∧ E2 ∈ ETp(ϕ ∧ ψ)

E1 ∈ ETp(ϕ) E2 ∈ ETp(ψ)

E1 ∨ E2 ∈ ETp(ϕ ∨ ψ)

E1 ∈ ET−p(ϕ) E2 ∈ ETp(ψ)

E1 → E2 ∈ ETp(ϕ→ ψ)

E ∈ ET+(ϕ[x\α])

∀x ϕ+α
ev E ∈ ET+(∀x ϕ)

E1 ∈ ET−(ϕ[x\t1]) · · · En ∈ ET−(ϕ[x\tn])

∀x ϕ+t1 E1 · · ·+tn En ∈ ET−(∀x ϕ)

E ∈ ET−(ϕ[x\α])

∃x ϕ+α
ev E ∈ ET−(∃x ϕ)

E1 ∈ ET+(ϕ[x\t1]) · · · En ∈ ET+(ϕ[x\tn])

∃x ϕ+t1 E1 · · ·+tn En ∈ ET+(∃x ϕ)

Each expansion tree E has a uniquely determined shallow formula and po-
larity, we write sh(E) for its shallow formula, and pol(E) for its polarity. Given
an expansion tree E = Qx ϕ +α

ev E
′ where Q ∈ {∀,∃}, we say that α is the

eigenvariable of E.

Example 1. Consider the formula3 ϕ := ∀x P (x) → (∀x P (f(x)) → Q) → Q.
The expansion tree ET+(ϕ) 3 E := (∀xP (x) +f(α) P (f(α)))→ (∀xP (f(x)) +α

ev

P (f(α)) → Q) → Q has the shallow formula sh(E) = ϕ, and its deep formula
dp(E) = (P (f(α)) → (P (f(α)) → Q) → Q) is tautological. The quantifier
instance terms here are f(α) and α (written in superscript after the +). An
instructive way to think about expansion proofs is that they are a compressed
form of cut-free sequent calculus proofs where we only store the quantifier in-
ferences. The following proof uses exactly the same terms, f(α) and α, in the
quantifier inferences ∀l and ∀r, resp.

P (f(α)) ` P (f(α))
∀l∀x P (x) ` P (f(α))
∀r∀x P (x) ` ∀x P (f(x)) Q ` Q →l

∀x P (x),∀x P (f(x))→ Q ` Q →r
∀x P (x) ` (∀x P (f(x))→ Q)→ Q →r
` ∀x P (x)→ (∀x P (f(x))→ Q)→ Q

3 We use the convention that the quantifiers ∀, ∃ bind stronger than →,∧,∨. That
is, ∀x P (x) → Q is the same formula as (∀x P (x)) → Q. Furthermore, → is right-
associative, that is, P → Q→ R is the same formula as P → (Q→ R).



Herbrand Constructivization for Automated Intuitionistic Theorem Proving 5

Definition 2. Let E be an expansion tree. We define the deep formula dp(E)
recursively as follows:

dp(Ap) = A, dp(>p) = >, dp(⊥p) = ⊥, dp(E1 ∧ E2) = dp(E1) ∧ dp(E2)

dp(E1 ∨ E2) = dp(E1) ∨ dp(E2), dp(E1 → E2) = dp(E1)→ dp(E2)

dp(∀x ϕ+y
ev E) = dp(E), dp(∀x ϕ+t1 E1 · · ·+tn En) = dp(E1) ∧ · · · ∧ dp(En)

dp(∃x ϕ+y
ev E) = dp(E), dp(∃x ϕ+t1 E1 · · ·+tn En) = dp(E1) ∨ · · · ∨ dp(En)

The deep formula corresponds to the Herbrand disjunction. In an expansion
proof, the eigenvariables need to be acyclic. This restriction is similar to the
eigenvariable condition in sequent calculi and the acceptability condition for
substitutions in matrices [4]. Let FV(ϕ) be the set of free variables of a formula ϕ.

Definition 3. Let E be an expansion tree. The dependency relation <E is a
binary relation on eigenvariables where α <E β iff E contains a subtree E′ such
that α ∈ FV(sh(E′)) and β is an eigenvariable of a subtree of E′.

Definition 4. An expansion proof4 E of ϕ is an E ∈ ET+(ϕ) such that:

1. <E is acyclic (i.e., can be extended to a linear order) and
there are no duplicate eigenvariables, and

2. dp(E) is a quasi-tautology

Theorem 1 ([23, Theorems 4.1 and 4.2]). A formula ϕ is a theorem of clas-
sical first-order logic if and only if there exists an expansion proof E ∈ ET+(ϕ).

Example 2. The formula ∃x (p(c) ∨ p(d) → p(c)) has E1 = ∃x (p(c) ∨ p(d) →
p(c)) +c (p(c)− ∨ p(d)− → p(c)+) as an expansion proof. The deep formula
dp(E1) = p(c)∨p(d)→ p(c) is a tautology. This is not the only possible expansion
proof of this formula: we could also use the instance d instead of c.

Expansion proofs are closely related to the matrix characterization for clas-
sical first-order logic [4] used by connection-based theorem provers [30]. Both
separate the proof into two layers: the quantifier inference terms, and the propo-
sitional proof. In connection proofs, the quantifier instance terms are stored
implicitly as the result of the unifier induced by the connections, while expan-
sion proofs contain these terms explicitly. In the classical setting, the multiplicity
in a connection proof corresponds essentially to the number of children in the
weak quantifier nodes of an expansion tree. (In the intuitionistic setting, the
multiplicity also constrains the amount of contraction in a corresponding se-
quent calculus proof, i.e., how often subformulas can be used. There is no such
constraint in our expansion-proof based method.) Integrating equality into con-
nection proofs is hard as it requires simultaneous rigid E-unification [38], and

4 Proof systems (for propositional logic) are typically required to be polynomial-time
checkable, as certificates to the coNP-complete validity problem. Expansion proofs
are coNP-checkable certificates for the undecidable first-order validity problem.
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connection provers such as leanCoP hence perform equational reasoning during
proof search by adding axioms for reflexivity, transitivity, and congruence of
equality during preprocessing.

By contrast, expansion proofs work modulo equality. We do not need to add
explicit axioms for equality. Instead, the handling of equality is part of verifying
that the deep formula is a quasi-tautology, and can be done using off-the-shelf
SMT solvers (which are typically the fastest tools to decide validity of quantifier-
free formulas). In principle, this could also be extended to other decidable (and
for our purposes, intuitionistically valid) theories used in SMT solvers such as
Presburger arithmetic.

4 Proof Constructivization

Our proof constructivization method operates on the level of expansion proofs.
That is, it takes an expansion proof and (if successful) produces an intuitionistic
proof using (at most) the quantifier inferences indicated by the expansion proof.
The expansion proof only restricts the quantifier instance terms in the proof;
not how often a subformula is used (i.e. contraction). We want to find a proof
in the multi-succedent intuitionistic sequent calculus mLJ as shown in Fig. 1,
where all eigenvariables and quantifier instances occur in the expansion proof
and there are no duplicate eigenvariables along any branch of the proof.

Definition 5. An mLJ-proof π realizes an expansion proof E iff every quantifier
instance term in π is contained in E, i.e.: (and analogously for ∃)

– If
Γ ` ϕ(α)

Γ ` ∀x ϕ(x)
is a subproof of π, then ∀x ϕ(x) +α

ev E
′ is a subtree of E

(for some E′)

– If
ϕ(t), Γ ` ∆
∀x ϕ(x), Γ ` ∆

is a subproof of π, then ∀x ϕ(x) +t E′ · · · is a subtree

of E (for some E′)

Note that Definition 5 ignores the ancestor relationship of formulas in a proof:
if two subtrees E1, E2 of E have the same shallow formula, then their instances
can be be used interchangeably in π.

Definition 6. An mLJ-proof π is called weakly regular iff for all subproofs of
the following form, α does not occur as the eigenvariable of an inference in π′:

(π′)

Γ ` ϕ(α)
∀r

Γ ` ∀x ϕ(x)

or

(π′)

ϕ(α), Γ ` ∆
∃l∃x ϕ(x), Γ ` ∆

Our algorithm will have the property that whenever a cut-free weakly regular
mLJ-proof of sh(E) exists which realizes E, the algorithm will succeed and return
an intuitionistic proof. The restriction of cut-free weak regularity is due to the
intuitionistic logic; in classical logic, we can always find a cut-free weakly regular
proof realizing E, provided that dp(E) is quasi-tautological.
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ax
ϕ ` ϕ

Γ ` ∆ wl
ϕ, Γ ` ∆

Γ ` ∆ wr
Γ ` ∆,ϕ

Γ ` ∆,ϕ ϕ,Π ` Λ
cut

Γ,Π ` ∆,Λ

rfl` t = t
Γ ` ∆,ϕ(t)

eq→r
Γ, t = s ` ∆,ϕ(s)

Γ ` ∆,ϕ(s)
eq←r

Γ, t = s ` ∆,ϕ(t)

ϕ(t), Γ ` ∆
eq→l

ϕ(s), Γ, t = s ` ∆
ϕ(s), Γ ` ∆

eq←l
ϕ(t), Γ, t = s ` ∆

>r` > ⊥l⊥ `
Γ ` ∆,ϕ, ψ ∨r
Γ ` ∆,ϕ ∨ ψ

ϕ, Γ ` ∆ ψ,Γ ` ∆ ∨l
ϕ ∨ ψ, Γ ` ∆

ϕ,ψ, Γ ` ∆ ∧l
ϕ ∧ ψ, Γ ` ∆

Γ ` ∆,ϕ Γ ` ∆,ψ ∧r
Γ ` ∆,ϕ ∧ ψ

Γ, ϕ ` ψ →r
Γ ` ϕ→ ψ

Γ ` ∆,ϕ ψ, Γ ` ∆ →l
ϕ→ ψ, Γ ` ∆

Γ ` ∆,ϕ(t)
∃r

Γ ` ∆,∃x ϕ(x)

ϕ(α), Γ ` ∆
∃l∃x ϕ(x), Γ ` ∆

ϕ(t), Γ ` ∆
∀l∀x ϕ(x), Γ ` ∆

Γ ` ϕ(α)
∀r

Γ ` ∀x ϕ(x)

Fig. 1. The multi-succedent calculus mLJ for intuitionistic first-order logic (variant of
L’J first introduced by Maehara [20] but using sets instead of sequences, see also mG1i
in Troelstra and Schwichtenberg’s classification [37]). A sequent Γ ` ∆ consists of two
sets of formulas Γ and ∆ and is interpreted as the formula

∧
Γ →

∨
∆. The variable

α in the ∃l and ∀r inferences is called an eigenvariable, and must not occur in Γ,∆
as a free variable. The proof system is cut-free complete for intuitionistic first-order
logic with equality. Note that the rules →r, ∀r do not have any extra formulas ∆ in
the succedent: this is the only difference to the classical calculus.

Example 3. Consider the expansion proof ` ¬¬(∀x (p ∨ ¬p) +α
ev (p+ ∨ ¬p−)).

This expansion proof cannot be realized by a weakly regular cut-free mLJ-proof
of ` ¬¬∀x (p ∨ ¬p), since we would need to use two ∀r inferences but the ex-
pansion proof only contains one eigenvariable. The natural proof would use the
eigenvariable α twice. (Note that this example requires that α does not occur
in p: the formula ¬¬∀x (q(x) ∨ ¬q(x)) is not an intuitionistic theorem.)

The SAT-based bottom-up proof construction is done in the Construct
and Solve procedures shown in Algorithm 1. The main function Solve applies
the inference rules ∃l,∀r, and →r and calls itself recursively with the premise of
these inferences. However it does this in a loop where it first extends the given
sequent to a maximal sequent by obtaining a model from the SAT solver. Such
a sequent corresponds to a leaf in a restricted bottom-up search, which only
uses inferences (all except for →r,∀r,∃l—these inferences have an eigenvariable
or single-conclusion restriction) that we have encoded as clauses in the SAT
solver (in the Construct function). There may be multiple such leaves (e.g.
corresponding to two ∀r inferences in different branches of the proof), hence
Solve iterates over the models in a loop.

We use an incremental interface to the SAT solver: the solver internally
maintains a set of clauses C. A clause is a set of literals. If l is a literal, then −l
is the negated literal. The function Assert adds a clause to this set. Given a
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Algorithm 1 SAT-based proof constructivization

1: procedure Construct(E) . returns true if intuitionistic proof of sh(E) found
2: Assert(‖>‖); Assert(−‖⊥‖)
3: Assert(−‖sh(E1)‖, ‖sh(E1 ∨ E2)‖) for each subtree E1 ∨ E2 of E
4: Assert(−‖sh(E2)‖, ‖sh(E1 ∨ E2)‖) for each subtree E1 ∨ E2 of E
5: Assert(−‖sh(E1 ∨ E2)‖, ‖sh(E1)‖, ‖sh(E2)‖) for each subtree E1 ∨ E2 of E
6: Assert(−‖sh(E1 ∧ E2)‖, ‖sh(E1)‖) for each subtree E1 ∧ E2 of E
7: Assert(−‖sh(E1 ∧ E2)‖, ‖sh(E2)‖) for each subtree E1 ∧ E2 of E
8: Assert(−‖sh(E1)‖,−‖sh(E2)‖, ‖sh(E1 ∧E2)‖) for each subtree E1 ∧E2 of E
9: Assert(−‖sh(E2)‖, ‖sh(E1 → E2)‖) for each subtree E1 → E2 of E

10: Assert(−‖sh(E1)‖,−‖sh(E1 → E2)‖, ‖sh(E2)‖) for each subtree
11: E1 → E2 of E
12: Assert(−‖sh(E′)|, ‖sh(Ei)‖) for each subtree
13: E′ = ∀x ϕ(x) +t1 E1 · · ·+tn En of E and 1 ≤ i ≤ n
14: Assert(−‖sh(Ei)‖, ‖sh(E′)‖) for each subtree
15: E′ = ∃x ϕ(x) +t1 E1 · · ·+tn En of E and 1 ≤ i ≤ n
16: return Solve(E; ∅;` sh(E))

17: procedure Solve(E;Σ;Γ ` ∆) . Σ is the set of already used eigenvariables
18: . returns true if we have found an intuitionistic proof of Γ ` ∆
19: while IsESatisfiable(‖Γ‖,−‖∆‖) do
20: I = GetModel(‖Γ‖,−‖∆‖)
21: (Γ ′,∆′) = ({ϕ | I(‖ϕ‖) = 1}, {ϕ | I(‖ϕ‖) = 0}) . Γ ′ ⊇ Γ and ∆′ ⊇ ∆
22: for each ϕ→ ψ in ∆′ such that ϕ 6∈ Γ ′ do
23: if Solve(E;Σ;Γ ′, ϕ ` ψ) then
24: C = UnsatCore(‖Γ ′‖, ‖ϕ‖,−‖ψ‖)
25: Assert(−C \ {‖ψ‖,−‖ϕ‖}, ‖ϕ→ ψ‖)
26: continue outer loop

27: for each ∀x ϕ in ∆′ and subtree ∀x ϕ+α
ev . . . in E with α 6∈ Σ do

28: Γ ′α = {ψ ∈ Γ ′ | α 6∈ FV(ψ)}
29: if Solve(E;Σ ∪ {α};Γ ′α ` ϕ(α)) then
30: C = UnsatCore(‖Γ ′α‖,−‖ϕ(α)‖)
31: Assert(−C \ {‖ϕ(α)‖}, ‖∀x ϕ(x)‖)
32: continue outer loop

33: for each ∃x ϕ in Γ ′ and subtree ∃x ϕ+α
ev . . . in E with α 6∈ Σ do

34: (Γ ′α,∆
′
α) = ({ψ ∈ Γ ′ | α 6∈ FV(ψ)}, {ψ ∈ ∆′ | α 6∈ FV(ψ)})

35: if Solve(E;Σ ∪ {α};Γ ′α, ϕ(α) ` ∆′α) then
36: C = UnsatCore(‖Γ ′α‖, ‖ϕ(α)‖,−‖∆′α‖)
37: Assert(−C \ {−‖ϕ(α)‖},−‖∃x ϕ(x)‖)
38: continue outer loop

39: return false
40: return true
41: procedure IsESatisfiable(A) . returns true iff satisfiable modulo equality
42: while IsSatisfiable(A) do . implemented using congrence closure
43: I = GetModel(A)
44: if {ϕ | I(‖ϕ‖) = 1} ` {ϕ | I(‖ϕ‖) = 0} is provable with cut, w, rfl, eq then
45: Assert(end-sequent of equality proof)
46: else return true
47: return false
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set of literals A (short for assumptions), the function IsSatisfiable(A) returns
true iff

∧
C ∧

∧
A is satisfiable. If it is satisfiable, the function GetModel(A)

returns a model. If it is unsatisfiable, then UnsatCore(A) returns a minimal
subset A′ ⊆ A such that

∧
C ∧

∧
A′ is still unsatisfiable.

Concretely we associate to the shallow formula ϕ of every subtree of E
a variable ‖ϕ‖ in the SAT solver. Given a set of formulas Γ , we also define
‖Γ‖ = {‖ϕ‖ | ϕ ∈ Γ} (in particular ‖∅‖ = ∅). We only call Assert(−‖Γ‖, ‖∆‖)
if we have an intuitionistic mLJ-proof of Γ ` ∆ (that is,

∧
Γ →

∨
∆ is an

intuitionistic theorem). A model I returned by the SAT solver corresponds to
the sequent {ϕ | I(‖ϕ‖) = 1} ` {ϕ | I(‖ϕ‖) = 0}.

By asserting specific clauses, we can ensure that these sequents obtained from
models are closed under inferences: for example if we call Assert(−‖ϕ∧ψ‖, ‖ψ‖)
then any model I satisfies I(‖ψ‖) = 1 if I(‖ϕ∧ψ‖) = 1. Hence, the sequent Γ ` ∆
corresponding to the model has ψ ∈ Γ if ϕ∧ψ ∈ Γ and is closed under (part of)
the ∧l rule (read bottom-up). We add these clauses in the Construct function.

The other inferences, →r,∀r,∃l, are handled in the Solve function. For ex-
ample, lines 23-26 handle an →r inference inferring Γ ′ ` ϕ→ ψ from Γ ′, ϕ ` ψ
in the following way: the recursive Solve-call first tries to prove Γ ′, ϕ ` ψ. The
set of literals C returned by UnsatCore then corresponds to a minimal subset
Γ ′′ ⊆ Γ ′ such that Γ ′′, ϕ ` ψ (the minimization is purely an optimization, albeit
an important one). The correspondence is that ‖Γ ′′‖ = C \ {‖ϕ‖,−‖ψ‖}. We
then assert −‖Γ ′′‖, ‖ϕ → ψ‖ (computed using C in line 25) corresponding to
the provable sequent Γ ′′ ` ϕ → ψ. Note that the polarities of the SAT solver
variables are inverse in the assumptions passed to UnsatCore and the clause
passed to Assert: UnsatCore(A) returns a minimal subset of A′ ⊆ A such
that −A′ (regarded as a clause) is implied by the current clauses.

Algorithm 1 terminates, since each recursive call of Solve either increases
the size of Σ or increases the size of the antecedent Γ while keeping Σ the
same; the while-loop in Solve never iterates over the same model twice since
the Assert-calls in Solve add clauses that are not true in the current model.

Example 4. Consider again the expansion proof from Example 1 and abbreviate
ψ = ∀x P (f(x))→ Q. Then Construct asserts the following clauses:

‖>‖ − ‖ϕ‖,−‖∀x P (x)‖, ‖ψ → Q‖
− ‖⊥‖ − ‖ψ → Q‖,−‖ψ‖, ‖Q‖
− ‖ψ → Q‖, ‖ϕ‖ − ‖ψ‖,−‖∀x P (f(x))‖, ‖Q‖
− ‖Q‖, ‖ψ → Q‖ − ‖∀x P (x)‖, ‖P (f(α))‖

And Solve proceeds in the following recursive call tree:

– Solve(E; ∅; ` ϕ)
• Obtained model: ‖>‖ (list of all p with I(p) = 1)
• Solve(E; ∅; >,∀x P (x) ` ψ → Q) (line 23 for ϕ)
∗ Obtained model: ‖>‖, ‖∀x P (x)‖, ‖P (f(α))‖
∗ Solve(E; ∅; >,∀x P (x), P (f(α)), ψ ` Q) (line 23 for ψ → Q)
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· Obtained model: ‖>‖, ‖∀x P (x)‖, ‖P (f(α))‖, ‖ψ‖
· Solve(E; {α}; >,∀xP (x), ψ ` P (f(α))) (line 29 for ∀xP (f(x)))
· Assert(−‖∀x P (x)‖, ‖∀x P (f(x))‖)

∗ Assert(−‖∀x P (x)‖, ‖ψ → Q‖)
• Assert(‖ϕ‖)

Theorem 2. If Construct(E) returns true, then there is an mLJ-proof of
sh(E) realizing E (and sh(E) is an intuitionistic theorem).

Proof. We store an mLJ-proof Γ ` ∆ for every clause −‖Γ‖, ‖∆‖ that is passed
to Assert: these all have straightforward proofs in mLJ. Whenever IsESatis-
fiable(‖Γ‖,−‖∆‖) returns false for a sequent Γ ` ∆, we have an mLJ-proof of
Γ ` ∆ by combining the previously stored proofs using cuts as in the resolution
refutation returned by the SAT solver. ut

Let us now prove completeness, i.e., Construct returns true if the expansion
proof E is realized by a weakly regular proof π of sh(E) in mLJ. Intuitively, the
procedure succeeds because it can just pick the same inferences as in π. In
a sense, the function Solve proceeds upwards through the proof π, the SAT
solver jumps over all inferences except ∃l,∀r,→r, and the model Γ ′ ` ∆′ that
we consider in Solve corresponds to an ∃l,∀r or →r inference in π.

Formally, we capture the required properties for the model obtained from
the SAT solver as “maximal” sequents. Whenever a proof ends in a sub-sequent
of a maximal sequent, we can trace the proof upwards to find a ∃l,∀r or →r

inference also ending in a sub-sequent of the maximal sequent.

Definition 7. A sequent Γ ` ∆ is called maximal (for an expansion proof E)
iff all of the following are true:

– Γ ∪∆ is the set of all shallow formulas of subtrees of E
– Γ ∩∆ = ∅
– ⊥ ∈ ∆
– > ∈ Γ
– If ϕ ∧ ψ ∈ Γ , then ϕ,ψ ∈ Γ
– If ϕ ∧ ψ ∈ ∆, then ϕ ∈ Γ or ψ ∈ Γ
– If ϕ ∨ ψ ∈ ∆, then ϕ,ψ ∈ ∆
– If ϕ ∨ ψ ∈ Γ , then ϕ ∈ Γ or ψ ∈ Γ
– If ϕ→ ψ ∈ Γ , then ϕ ∈ ∆ or ψ ∈ Γ
– If ∀x ϕ(x) ∈ Γ and ∀x ϕ(x) +t1 · · ·+tn is a subtree of E,

then ϕ(t1), . . . , ϕ(tn) ∈ Γ .
– If ∃x ϕ(x) ∈ ∆ and ∃x ϕ(x) +t1 · · ·+tn is a subtree of E,

then ϕ(t1), . . . , ϕ(tn) ∈ ∆

Lemma 1. The sequent Γ ′ ` ∆′ obtained in line 21 from the model returned by
GetModel in Solve(E;Σ;Γ ` ∆) is maximal for E.

Proof. The set Γ ′ ∪ ∆′ contains all shallow formulas, and we have Γ ′ ∩ ∆′ =
∅ because Γ ′ ` ∆′ corresponds to a model. Each of the other conditions in
Definition 7 is then ensured by a clause that is asserted in the Construct
function: e.g. ⊥ ∈ ∆′ is ensured by Assert(−‖⊥‖). ut
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Lemma 2. Let S be maximal for E, and π be an mLJ-proof of S ′ realizing E,
such that S ′ is a subsequent of S. Then there is a subproof π′ of π such that
the end-sequent of π′ is also a sub-sequent of S, and π′ ends in a ∃l,∀r or →r

inference.

Proof. By straightforward induction on π. For illustration, let us prove the case

where π ends in an ∧r-inference:

(π1)

Γ ` ∆,ϕ
(π2)

Γ ` ∆,ψ ∧r
Γ ` ∆,ϕ ∧ ψ

Let S = (Γ ′ ` ∆′). Note that Γ ` ∆,ϕ ∧ ψ is a subsequent of Γ ′ ` ∆′ by
assumption and hence ϕ ∧ ψ ∈ ∆′. The sequent S is maximal, so ϕ ∈ ∆′ or
ψ ∈ ∆′. First consider ϕ ∈ ∆′; then Γ ` ∆,ϕ is a subsequent of S and we can
apply the induction hypothesis. The case ψ ∈ ∆′ is symmetric. ut

Theorem 3. If E can be realized by a weakly regular cut-free mLJ-proof of
sh(E), then Construct(E) returns true.

Proof. We use the following invariant for Solve(E;Σ;Γ ` ∆): if there is a
weakly regular cut-free mLJ-proof π of a subsequent of Γ ` ∆ realizing E such
that the eigenvariables in π are disjoint from Σ, then Solve returns true.

In Solve, let π be the subproof described above, and let Γ ′ ` ∆′ be the
sequent constructed from the model in line 21. Then Γ ′ ` ∆′ is a maximal
sequent by Lemma 1. There is a subproof π′ of π whose end-sequent is a sub-
sequent of Γ ′ ` ∆′ and that ends in a ∃l,∀r or→r inference by Lemma 2. At least
one of the recursive calls then corresponds to this inference, and invokes Solve
with the premise of the inference, which hence returns true. Weak regularity of
π ensures that the precondition for Σ is satisfied. The clause passed to Assert
corresponds to the conclusion of the ∃l,∀r,→r-inference, and we continue to the
next iteration of the loop. ut

For quantifier-free formulas, the constructivization method is a decision pro-
cedure since mLJ is cut-free complete and proofs of quantifier-free formulas are
trivially weakly regular and realize the expansion proof. The author believes that
it should be possible to give a similar proof-theoretic completeness proof for the
Intuit prover [9] (their paper gives a proof based on Kripke models).

Corollary 1. If sh(E) is a quantifier-free formula, then Construct(E) re-
turns true if and only if sh(E) is an intuitionistic theorem.

5 Optimizations

For performance reasons, we implement several optimizations in the Solve pro-
cedure. The first one was already described in [9].

Caching unsolvable cases. By using a SAT solver, we already have a cache for
the solvable cases: whenever Solve(E;Σ;Γ ` ∆) returns true, the SAT solver
remembers the conflict clause and all subsequent calls to Solve will terminate
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after just one call to IsESatisfiable. However if we cannot find a proof, then
we would need to repeat the costly recursive backtracking procedure. Hence we
store all pairs (Σ;Γ ′ ` ∆′) where the result is false (Γ ′ ` ∆′ is the model
obtained in line 21). At the beginning of Solve we check if we have already
stored a pair (Σ′′;Γ ′′ ` ∆′′) such that Σ ⊆ Σ′′ and Γ ⊇ Γ ′′ and ∆ ⊇ ∆′′, and
return false if there is such a pair. (Pairs are stored in a trie-like data structure.)

Classical quasi-tautology check. If a sequent Γ ` ∆ is not even classically
provable, then it cannot be intuitionistically provable either. This easy obser-
vation allows us to prune large branches of the backtracking search in Solve.
The function IsESatisfiable(‖Γ‖,−‖∆‖) returns false if there is a weakly reg-
ular cut-free mLJ-proof of Γ ` ∆ realizing E without the inferences →r,∀r,∃l.
We add a fresh variable c in such a way that IsESatisfiable(c, ‖Γ‖,−‖∆‖)
returns false iff there is a classical proof of Γ ` ∆ realizing E. The classical
calculus differs from mLJ only in the rules →r,∀r. (Concretely, we assert the
clauses c ` ‖ϕ→ ψ‖, ‖ϕ‖ and c, ‖ϕ(α)‖ ` ‖∀x ϕ(x)‖ and c, ‖∃x ϕ(x)‖ ` ‖ϕ(α)‖
for the corresponding shallow formulas of subtrees of E.)

Invertible occurrences of ∃l. In some cases we can avoid backtracking with
existential quantifiers in the antecedent. This is the case if we have a sub-
tree ∃x ϕ(x) +α

ev E1, where all free variables in ∃x ϕ(x) are already in Σ.
In this case we immediately apply the corresponding ∃l inference, and skip
all the loops in the Solve procedure. This is correct because we can per-
mute the ∃l inference downward in the realizing proof. Consider e.g. the ex-
pansion proof ∀x ∃y R(x, y) +α (· · ·+β

ev R(α, β)−) +f(α) (· · ·+γ
ev R(f(α), γ)−) `

∀x ∃y ∃z (R(x, y) ∧ R(f(x), z)) +α
ev · · · +β · · · +γ (R(α, β)+ ∧ R(f(α), γ)+). In

line 29, we first introduce the α eigenvariable, and then (in recursive calls) the
β and γ eigenvariables in line 35. Without the optimization, we would then try
every permutation of β, γ if Solve returned false (which will be expensive if
there are more eigenvariables). With the optimization, we only need to consider
a single permutation.

6 Completeness on Subclasses

In general, our proof constructivization-based approach to intuitionistic theorem
proving is incomplete. For example, ∀x(p(x)∨¬p(x)) ` ¬¬p(c)→ p(c) is an intu-
itionistic theorem where our approach will fail—we clearly need the assumption
∀x(p(x)∨¬p(x)), but virtually all classical theorem provers will discard it imme-
diately and never use it. For decidability assumptions such as ∀x (p(x) ∨ ¬p(x))
we can use heuristic instantiation as a pre-processing step, adding all instances
of the formula for subterms occurring in the expansion proof.

However there are some classes of formulas where our approach is complete.
These are classes of first-order formulas where intuitionistic provability is equiv-
alent to classical provability, such classes are called Glivenko classes and were
e.g. studied by Orevkov. See also [27] for a more modern presentation.

Definition 8 ([28]). Class 1 is the set of sequents which do not have positive
occurrences of → or ∀.
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Example 5. The sequent ∀x(p(x)→ q(x)∨¬r(x)), p(c)∧r(c) ` q(c) is in Class 1;
(p→ q)→ p ` and (∀x p(x))→ q ` are not in Class 1 since they have a positive
occurrence of → and ∀, resp.

Many practically relevant problems are in Class 1; all Horn problems, all
rewriting problems, and all problems in CNF are in Class 1. It is instructive to
look at the proof that intuitionistic provability is equivalent to classical prov-
ability for all problems in Class 1:

Theorem 4 ([28]). Let Γ ` ∆ be a sequent in Class 1. If Γ ` ∆ is provable
in classical logic, then it is provable in intuitionistic logic as well.

Proof. Let π be a cut-free proof of Γ ` ∆ in the sequent calculus LK (which
is cut-free complete for classical logic). Then π does not contain any of the
inferences →r or ∀r by the subformula property (these are the only inferences
that are different between LK and mLJ), and is hence a proof in mLJ. ut

Corollary 2. Let E be an expansion proof such that sh(E) is in Class 1, and
dp(E) is a quasi-tautology. Then Construct(E) returns true.

Proof. There is a weakly regular proof in LK of sh(E) realizing E since dp(E)
is a quasi-tautology, with the observation in Theorem 4 this proof is in mLJ.
Hence Construct succeeds by Theorem 3. ut

Corollary 2 shows that our prover as a whole is complete for sequents in Class
1. A similar result also holds for Orevkov’s Class 2 (no positive occurrences
of → and no negative occurrences of ∨). The constructivization procedure of
Gilbert [16] was also shown to be complete for Class 2 (called F in their paper).

7 Experimental Evaluation

We have implemented and evaluated this constructivization approach in the open
source GAPT5 system for proof theory [15], version 2.14. Many of its features
are centered around a computational implementation of Herbrand’s theorem and
expansion trees, such as lemma generation [14], inductive theorem proving [12],
deskolemization, and proof import [33].

The intuitionistic first-order prover based on this constructivization proce-
dure is called Slakje, and provides a command-line program reading input prob-
lems in TPTP format [35]. Since GAPT is written in Scala and distributed as a
platform-neutral tarball, we want to avoid external dependencies and prefer to
use libraries available on the JVM: as a SAT solver we use Sat4j [2], for equality
reasoning we wrote a simple congruence closure implementation.

By default, Slakje prints the generated mLJ proof in the TPTP derivation
format, writing each sequent in the proof on a separate line. Other output options
are supported as well: the --prooftool option displays the mLJ proof tree in

5 Open source, and freely available at https://logic.at/gapt

https://logic.at/gapt
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Fig. 2. Cactus plot of the prover runtime on proved theorems.

the graphical ProofTool user interface [11]. The --lj option transforms the mLJ
proof to a cut-free proof in the single-conclusion intuitionistic LJ calculus.

GAPT already contains a reliable interface to external theorem provers that
produces expansion proofs and supports many first-order provers, including
Vampire [19], E [34], SPASS [40], leanCoP [30], Prover9 [21], as well as oth-
ers. GAPT also includes a simple built-in superposition prover called Escargot,
which is mainly used for proof replay and small-scale automation in tactic proofs.
For the experimental evaluation, we used Vampire 4.2.2, E 2.2, and Escargot as
backends for Slakje. We do not call the external provers for quantifier-free prob-
lems: there are no quantifier instances that we could import, and furthermore
the constructivization procedure is already a decision problem in the quantifier-
free case by Corollary 1. The prover interface in GAPT supports most external
provers (including Vampire and E) using proof replay, which reconstructs the
proofs line-by-line by reproving each inference as a first-order problem using Es-
cargot. There is special support for the Avatar [39] splitting inferences produced
by Vampire. The interface operates on the level of clauses, the clausification and
Skolemization is performed inside GAPT. Parsing and importing the Skolem-
ization and clausification steps of all supported provers would be a tremendous
amount of work, since every prover (and sometimes different versions of the same
prover) use different proof output for these steps.

We evaluated the Slakje prover on the problems in the first-order section of
the Intuitionistic Logic Theorem Proving library [32], version 1.1.2. The ILTP
library contains a mixture of problems from the TPTP, as well as problems
designed for intuitionistic provers in the GEJ (constructive geometry), GPJ (group
theory), and SYJ (intuitionistic syntactic) categories. The ILTP also contains
benchmarking results for a number of intuitionistic theorem provers from 2006. In
those results, ileanCoP [30] solves the largest number of problems by a significant
margin.

The provers imogen [22] and WhaleProver [31] were also benchmarked on
the ILTP, performing competitively with ileanCoP. According to [22], imogen
solves 857 problems, improving on the 690 problems solved by ileanCoP 1.0.
(On our hardware, the newest ileanCoP 1.2 version now solves 891 problems.)
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Unfortunately we were not able to build a working version of imogen, so we
could not benchmark it on our hardware. WhaleProver is not publicly available
at all, according to [31] it solves 811 problems.

In our evaluation we compared Slakje against the current ileanCoP 1.2 ver-
sion, running both Slakje and ileanCoP on a Debian Linux system with an Intel
i5-4570 CPU and 8 GiB RAM.

The ILTP contains 2670 problems in the first-order section. (There are only
2550 problems according to the ILTP website, however the archive file6 contains
2670 problem files.). Slakje solves 1674 of these problems (1290 theorems and
384 non-theorems) with Vampire 4.2.2 as a backend (total time limit of 60 sec-
onds, no command-line options). ileanCoP 1.2 solves 891 (813 theorems and 78
non-theorems). 905 of the problems solved by Slakje were not solved by ilean-
CoP (546 of which are theorems, and 359 non-theorems). (Including the ILTP
benchmark results as well, Slakje solves 800 problems not solved by ileanCoP
in our benchmarks, or any prover in the 2006 ILTP benchmarks.) Slakje could
not solve 122 problems that were solved by ileanCoP; 69 of these problems are
intuitionistic non-theorems. For the other 53 intuitionistic theorems, in one case
Slakje fails due to a timeout, and 24 could be solved with a different backend
(Escargot or E).

The runtime of Slakje with the three backends (Escargot, E, and Vampire),
and ileanCoP is shown as a cactus plot in Fig. 2. Slakje is leading in the number of
proven theorems with any of the three backends; the most theorems are obtained
using Vampire (1290 thms. and 384 nonthms.), followed by E (1210 thms. and
370 nonthms.), and Escargot (1096 thms. and 363 nonthms.).

While Slakje can prove many difficult problems, it has a high overhead: the
median runtime for solved problems is 3199ms, compared to 46ms for ileanCoP.
Within a time limit of one second, Slakje can only prove a single theorem, while
ileanCoP proves 734. This overhead is likely due to multiple factors: since Slakje
runs on the JVM, it takes some time for the just-in-time compiler to compile the
code. Furthermore, the interface to the external provers such as Vampire was
designed to be generic and is not highly optimized, e.g. we use the first-order
Escargot prover to reconstruct every inference that Vampire produces.

We might assume that the success of Slakje is due to benchmark set: that
the ILTP contains many Horn problems or purely equational problems. However
this is not the case. Only 650 of the problems in the ILTP are in Class 1 (recall
Definition 8). If we remove formulas that were not used in the classical proofs,
then 980 of the problems are in Class 1. Looking at the runtime plots for Class 1
problems vs. non-Class 1 problems, there does not seem to be a large difference
and Slakje is also leading even for the non-Class 1 problems, which should be
harder for Slakje as it is not complete there.

We have also run Vampire directly on the problems in the ILTP (in CASC
mode with a time limit of 60 seconds) to obtain a realistic upper limit on how
many problems we can expect to solve intuitionistically. In this configuration
Vampire solves 2468 problems (2079 proofs and 389 satisfiable). When used via

6 available at http://iltp.de/download/ILTP-v1.1.2-firstorder.tar.gz

http://iltp.de/download/ILTP-v1.1.2-firstorder.tar.gz
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GAPT’s prover interface, Vampire solves 1938 out of the 2421 non-quantifier-
free problems, returning 1585 proofs in the textual TPTP derivation format and
353 satisfiable results (for which Slakje can immediately return non-theorem).
Proof replay then produces 1541 resolution proofs, which are converted to 1526
expansion proofs, ultimately yielding 1098 intuitionistic proofs in mLJ. (The
remaining 192 theorems are quantifier-free formulas, which we directly passed to
the constructivization procedure.) In each step we lose a few proofs due to the
time limit. The largest difference is in the initial step of running the external
theorem prover. We believe that this is mainly due to two reasons: first, the
TPTP parser in GAPT is less efficient and takes a long time to parse larger
problems. Second, we run Vampire in the default mode instead of the CASC
mode, since the CASC mode produces proofs that GAPT cannot parse reliably,
making it less effective in our interface.

8 Conclusion

First-order theorem proving seems to be fundamentally easier in classical logic
than in intuitionistic logic. We can use Skolemization, and have CNFs as a
simple normal form. The practical proof constructivization procedure that we
have presented allows to reuse some of these advantages of classical logic. In
a sense, we are learning from classical proofs to produce intuitionistic ones. In
our setting, we are learning the quantifier instances. On an empirical level, we
have shown that these instances as captured by expansion trees provide enough
information to produce intuitionistic proofs.

This proof constructivization technique is so effective that we obtain a highly
competitive automated intuitionistic first-order theorem prover by combining it
with a classical theorem prover. This prover, Slakje, performs very well on the
ILTP benchmark library for intuitionistic theorem provers: it proves 1290 out of
2670 problems with Vampire as a backend. This is significantly more than other
state-of-the-art provers such as ileanCoP (proving 813 problems).

However, this intuitionistic prover is incomplete since the classical theorem
prover may not produce enough quantifier instances for an intuitionistic proof.
One idea to fix this incompleteness that was already suggested in [9] is to add a
complete instantiation strategy akin to the support for first-order reasoning in
SMT solvers. Another approach would be to investigate variants of sound (se-
mantic) translations of intuitionistic logic into classical logic which are optimized
for automated theorem provers, and constructivize proofs of these translations.

As future work, we intend to integrate this prover approach in interactive
theorem provers and evaluate its use for proof automation and as a strong re-
construction tactic for hammers in proof assistants based on intuitionistic logic.
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