Tree grammars for induction on inductive data
types modulo equational theories

Gabriel Ebner, Stefan Hetzl

WAIT 2018
2018-06-28

TU Wien

Introduction

Introduction

- Main challenge: synthesis of induction formula

+ Consider proofs of instances ¢(t) of Vx ¢(x)

+ similar to the constructive w-rule,
bounded model checking, etc.

- Generalize instance proofs via Herbrand’s theorem
+ abstracts from propositional reasoning

Herbrand's theorem

Theorem (special case of Herbrand 1930)
Let ©(x) be a quantifier-free first-order formula.

Then 3x p(x) is valid iff there exist terms tq,. .., t,
such that o(t) V --- V (ty) is a tautology.

- works analogously for Vx p1(x), ..., VX @n(X) F ¢

Induction-elimination

Theorem (Gentzen 1936)
Let = be a proof of Vx ¢(x) with induction.

Then there exists a proof : of (t) without induction (or cut).

Induction-elimination

Theorem (Gentzen 1936)
Let = be a proof of Vx ¢(x) with induction.

Then there exists a proof : of (t) without induction (or cut).

- t: instance, e.g. 0,5(0), cons(a, nil)

- m¢: instance proof

Proofs and grammars (Eberhard, Hetzl 2015)

for each instance t

7Tcut- and induction-elim.

generates

G()

grammar H-disjunction

Proofs and grammars (Eberhard, Hetzl 2015)

for each instance t

7Tcut- and induction-elim.

generates

grammar 1 H-disjunction

Side remark: cut-introduction

- Instead of reconstructing inductions,
we can also reconstruct (M4-)cuts

- Similar 2-phase approach
« complete: every generated grammar produces a lemma

— finds interesting lemmas in practice

Proofs and tree grammars

New developments

+ Implementation
« Inductive data types

- Equational background theories

Equational background theories

« Instance proofs are often irregular

— ignore some (formula) instances

- Eis a set of (universally quantified) equations
ceg E={x-(y-2)=(x-y)-z}

+ pis an E-tautology iff E = ¢

Inductive data types

- Basic inductive data types
+ not nested, mutual, etc.

« Structural induction

I+ o(nil) p(y) F p(cons(x,y))

r
I o(t)

10

Simple induction proofs

- One universally quantified induction
- But different formula
+ (¢ is prenex and universally quantified)

(i)
r,',lb(Oé,V,"j,f),"' F w(avci(ﬁixi) (ﬂ—c)
F,W@’(a,yiﬁj,y),“‘ FW’U(Q.C,(V,),V) ind rCﬂ/”(O‘vavU)f“F@(a)
M vd(a,a,y) g [,y ¢(e, . y) F o)
cut
MF o)
I F VX p(x)

1

Induction grammar

Definition
Induction grammar is a tuple G = (7, «, (¥¢)c, 7, P)
with productions P of the form:

« 7= tla, Ue, 7]

* 7 — t[avﬁﬁi/]

12

Induction grammar

Definition
G() is induction grammar for simple induction proof

— describes quantifier instances

Definition
L(G,t) is the (finite) language of G (t constructor term)

Theorem
L(G(~),t) is E-tautological for all t

13

¥x (s(0) - x = x A x-5(0) = x), (f1)
VXYPVZX - (-2) = (X-Y) - 2. ()
fact(0) = s(0), (f3)
Vx fact(s(x)) = s(x) - fact(x), (f4)
vy qfact(y, 0) =y, (fs)
VxVy qgfact(y, s(x)) = qfact(y - s(x), X) (fe)
F ¥x gfact(s(0), x) = fact(x) (goal)

T =31 fu(v) | fs(7) | fe(v,7)
v — v -s(v)|s(0)

14

Inductive proving using tree grammars

15

Algorithm overview

Obtain proofs (7r)re)

Random testing: is L(G,t)
always E-tautological? counterexample found

Output proof
16

Grammar finding

+ Given finite collection t — Lt
+ L; represents a Herbrand disjunction

« Want G such that L(G, t) D Lt

« Find G with minimal number of productions
+ using a MaxSAT solver (see also Eberhard, E, Hetzl 2017)

17

Induced Boolean unification problem

+ Induction grammar induces BUP¢(X)

° r1a /\[/\X(av V1,lvf) = X(a, C1(171)77)

- o A AX(@ 7B F X(as (7))
I, /\X(a, «, t) t @(a)

« There exists simple induction proof with grammar G
iff there exists quantifier-free ¢ s.t. BUPs(y) E-tautology

— Find quantifier-free X such that all sequents are

E-tautological
+ even for quantified induction formulas

18

BUP example

=7 fa(‘t(O) - 5(0)7 TF X(Ol, 0, 7)

fact(0) =) =s(v) - fact(v),

qfact(~, 0) = v, afact(vy,s(v)) = afact(y - s(v),v),
X(a, v,5(0)) A X(a, v, - 5(v)) = X(a, 5(v),7)

fact(0) = s(0), X(a, a, 5(0)) F gfact(s(0), a) = fact(«)

BUP example

+ gfact(y,0) = v, fact(0) = s(0), T F X(«, 0,~)

« fact(0) = s(0), fact(s(v)) = s(v) - fact(v),
qfact(y, 0) = v, afact(v, s(v)) = qfact(y - s(v), v),
X(e, v,5(0)) AX(a, v, - 5(v)) F X(e, 5(v),7)
« fact(0) = s(0), X(av, at, 5(0)) F gfact(s(0), a) = fact(«)

Solution: X = Aa vy (qfact(vy,v) = v - fact(v))

Canonical formula

+ Canonical formula C; for t instance
+ Simplest case Cs(s(o)) = o A T1[¥\0] A T1[\s(0)]

« Implies any other solution
° Ct — 90(047 tv 7)

— Solution finding algorithm

1. Compute G
2. Enumerate consequences

- e.g. using forgetful resolution (a — b) A (b — ¢) ~ (a — ¢)

3. Replace some occurrences of t by v
4, Check if itis a solution

20

Undecidability of BUP solution

- Solvability of BUP is undecidable (Eberhard, Hetzl, Weller
2015)

- L(G,t) E-tautological for all t = BUP solvable?
+ unfortunately no

— solvability depends on the input proofs

21

Evaluation

22

Implementation

+ Prototype implementation

 GAPT: General Architecture for Proof Theory
- https://github.com/gapt/gapt

- Native support for TIP format

23

https://github.com/gapt/gapt

Evaluation on TIP

- Solves about 22 problems out of the box
+ Bit more with manual options

- All with quantifier-free induction formula

+ Probably due to lack of regularity in proofs

24

Reconstruction success

+ Does the method work with regular sequences of proofs?
- Tested 52 simple induction proofs

« We can always find a grammar.

- Reconstruction works for 43 proofs.

25

Case study: schematic CERES

- Analysis of proofs with induction (Cerna, Leitsch, Lolic;
ongoing work)

« Requires automatic inductive proof as intermediate step
- Complex induction invariants

(Omega(v) — E(0,f(S(a))))
A (Omega(v) — E(o,f(a)))
A (Omega(v) — Phi(0))
A =(Phi(s(v)) A Phi(v) A Omega(s(v)))
(automatically found)

26

Conclusion

27

- Modify provers to produce more regular proofs
+ e.g.innermost vs. outermost rewriting

- Regularize existing proofs?

« Improve solution finding phase
— constrained Horn clause solvers

28

Conclusion

« Not yet sufficient for TIP problems
- Alternative challenge:

+ Instead of finding induction formulas,
find regular sequences of Herbrand disjunctions

29

	Introduction
	Proofs and tree grammars
	Inductive proving using tree grammars
	Evaluation
	Conclusion

