Tree grammars for induction on inductive data types modulo equational theories

Gabriel Ebner, Stefan Hetzl

WAIT 2018 2018-06-28

TU Wien

Introduction

Proofs and tree grammars

Inductive proving using tree grammars

Evaluation

Conclusion

Introduction

· Main challenge: synthesis of induction formula

- Consider proofs of instances $\varphi(t)$ of $\forall x \varphi(x)$
 - similar to the constructive ω -rule, bounded model checking, etc.

- · Generalize instance proofs via Herbrand's theorem
 - abstracts from propositional reasoning

Herbrand's theorem

Theorem (special case of Herbrand 1930)

Let $\varphi(x)$ be a quantifier-free first-order formula.

Then $\exists x \varphi(x)$ is valid iff there exist terms t_1, \ldots, t_n such that $\varphi(t_1) \vee \cdots \vee \varphi(t_n)$ is a tautology.

• works analogously for $\forall x \varphi_1(x), \dots, \forall x \varphi_n(x) \vdash \psi$

3

Induction-elimination

Theorem (Gentzen 1936)

Let π be a proof of $\forall x \varphi(x)$ with induction.

Then there exists a proof π_t of $\varphi(t)$ without induction (or cut).

Induction-elimination

Theorem (Gentzen 1936)

Let π be a proof of $\forall x \varphi(x)$ with induction.

Then there exists a proof π_t of $\varphi(t)$ without induction (or cut).

- *t*: instance, e.g. 0, *s*(0), cons(*a*, nil)
- π_t : instance proof

Proofs and grammars (Eberhard, Hetzl 2015)

Proofs and grammars (Eberhard, Hetzl 2015)

Side remark: cut-introduction

- Instead of reconstructing inductions, we can also reconstruct (Π₁-)cuts
- · Similar 2-phase approach
 - complete: every generated grammar produces a lemma
- \rightarrow finds interesting lemmas in practice

Introduction

Proofs and tree grammars

Inductive proving using tree grammars

Evaluation

Conclusion

New developments

Implementation

Inductive data types

• Equational background theories

Equational background theories

- · Instance proofs are often irregular
- \rightarrow ignore some (formula) instances

• E is a set of (universally quantified) equations

• e.g.
$$E = \{x \cdot (y \cdot z) = (x \cdot y) \cdot z\}$$

• φ is an E-tautology iff $E \models \varphi$

Inductive data types

- · Basic inductive data types
 - · not nested, mutual, etc.
- Structural induction

$$\frac{\Gamma \vdash \varphi(\mathsf{nil}) \qquad \Gamma, \varphi(y) \vdash \varphi(\mathsf{cons}(x, y))}{\Gamma \vdash \varphi(t)}$$

Simple induction proofs

- · One universally quantified induction
- But different formula
 - (ψ is prenex and universally quantified)

$$\frac{(\pi_{i})}{\frac{\Gamma_{i}, \psi(\alpha, \nu_{i,j}, \overline{t}), \dots \vdash \psi(\alpha, c_{i}(\overline{\nu_{i}}), \overline{\gamma})}{\Gamma, \forall \overline{y} \psi(\alpha, \nu_{i,j}, \overline{y}), \dots \vdash \forall \overline{y} \psi(\alpha, c_{i}(\overline{\nu_{i}}), \overline{y})}} \cdots \inf_{\rho} \frac{(\pi_{c})}{\frac{\Gamma_{c}, \psi(\alpha, \alpha, \overline{u}), \dots \vdash \varphi(\alpha)}{\Gamma, \forall \overline{y} \psi(\alpha, \alpha, \overline{y}) \vdash \varphi(\alpha)}} \operatorname{cut}$$

Induction grammar

Definition

Induction grammar is a tuple $G = (\tau, \alpha, (\overline{\nu}_c)_c, \overline{\gamma}, P)$ with productions P of the form:

- $\tau \to t[\alpha, \overline{\nu}_c, \overline{\gamma}]$
- $\overline{\gamma} \to \overline{t}[\alpha, \overline{\nu}_c, \overline{\gamma}]$

Induction grammar

Definition

- ${\it G}(\pi)$ is induction grammar for simple induction proof π
 - \rightarrow describes quantifier instances

Definition

L(G, t) is the (finite) language of G(t) constructor term)

Theorem

 $L(G(\pi),t)$ is E-tautological for all t

Example

$$\forall x \, (s(0) \cdot x = x \land x \cdot s(0) = x), \qquad (f_1)$$

$$\forall x \forall y \forall z \, x \cdot (y \cdot z) = (x \cdot y) \cdot z, \qquad (f_2)$$

$$fact(0) = s(0), \qquad (f_3)$$

$$\forall x \, fact(s(x)) = s(x) \cdot fact(x), \qquad (f_4)$$

$$\forall y \, qfact(y, 0) = y, \qquad (f_5)$$

$$\forall x \forall y \, qfact(y, s(x)) = qfact(y \cdot s(x), x) \qquad (f_6)$$

$$\vdash \forall x \, qfact(s(0), x) = fact(x) \qquad (goal)$$

$$\tau \rightarrow f_3 \mid f_4(\nu) \mid f_5(\gamma) \mid f_6(\nu, \gamma)$$

$$\gamma \rightarrow \gamma \cdot s(\nu) \mid s(0)$$

Introduction

Proofs and tree grammars

Inductive proving using tree grammars

Evaluation

Conclusion

Algorithm overview

Grammar finding

- Given finite collection $t \mapsto L_t$
 - L_t represents a Herbrand disjunction
- Want G such that $L(G,t) \supseteq L_t$
- Find G with minimal number of productions
- using a MaxSAT solver (see also Eberhard, E, Hetzl 2017)

Induced Boolean unification problem

• Induction grammar induces $BUP_G(X)$

•
$$\Gamma_1$$
, $\bigwedge_l \bigwedge X(\alpha, \nu_{1,l}, \overline{t}) \vdash X(\alpha, c_1(\overline{\nu_1}), \overline{\gamma})$

- ..
- Γ_n , $\bigwedge_l \bigwedge X(\alpha, \nu_{n,l}, \overline{t}) \vdash X(\alpha, c_n(\overline{\nu_n}), \overline{\gamma})$
- Γ_c , $\bigwedge X(\alpha, \alpha, \overline{t}) \vdash \varphi(\alpha)$
- There exists simple induction proof with grammar G iff there exists quantifier-free φ s.t. $BUP_G(\varphi)$ E-tautology
- → Find quantifier-free X such that all sequents are E-tautological
 - · even for quantified induction formulas

BUP example

- qfact $(\gamma, 0) = \gamma$, fact(0) = s(0), $\top \vdash X(\alpha, 0, \gamma)$
- $fact(0) = s(0), fact(s(\nu)) = s(\nu) \cdot fact(\nu),$ $qfact(\gamma, 0) = \gamma, qfact(\gamma, s(\nu)) = qfact(\gamma \cdot s(\nu), \nu),$ $X(\alpha, \nu, s(0)) \wedge X(\alpha, \nu, \gamma \cdot s(\nu)) \vdash X(\alpha, s(\nu), \gamma)$
- $fact(0) = s(0), X(\alpha, \alpha, s(0)) \vdash qfact(s(0), \alpha) = fact(\alpha)$

BUP example

```
    qfact(γ, 0) = γ, fact(0) = s(0), ⊤ ⊢ X(α, 0, γ)
    fact(0) = s(0), fact(s(ν)) = s(ν) · fact(ν), qfact(γ, 0) = γ, qfact(γ, s(ν)) = qfact(γ · s(ν), ν), X(α, ν, s(0)) ∧ X(α, ν, γ · s(ν)) ⊢ X(α, s(ν), γ)
    fact(0) = s(0), X(α, α, s(0)) ⊢ qfact(s(0), α) = fact(α)
```

Solution: $X = \lambda \alpha \lambda \nu \lambda \gamma \left(\operatorname{qfact}(\gamma, \nu) = \gamma \cdot \operatorname{fact}(\nu) \right)$

19

Canonical formula

- Canonical formula C_t for t instance
 - Simplest case $C_{s(s(0))} = \Gamma_0 \wedge \Gamma_1[\nu \setminus 0] \wedge \Gamma_1[\nu \setminus s(0)]$
- · Implies any other solution
 - $C_t \to \varphi(\alpha, t, \overline{\gamma})$
- ightarrow Solution finding algorithm
 - 1. Compute C_t
 - 2. Enumerate consequences
 - e.g. using forgetful resolution $(a \to b) \land (b \to c) \leadsto (a \to c)$
 - 3. Replace some occurrences of t by u
 - 4. Check if it is a solution

Undecidability of BUP solution

- Solvability of BUP is undecidable (Eberhard, Hetzl, Weller 2015)
- L(G, t) E-tautological for all $t \Rightarrow BUP$ solvable?
 - · unfortunately no
- $\,
 ightarrow\,$ solvability depends on the input proofs

Introduction

Proofs and tree grammars

Inductive proving using tree grammars

Evaluation

Conclusion

Implementation

• Prototype implementation

- GAPT: General Architecture for Proof Theory
- https://github.com/gapt/gapt

Native support for TIP format

Evaluation on TIP

- · Solves about 22 problems out of the box
 - · Bit more with manual options
- · All with quantifier-free induction formula
- Probably due to lack of regularity in proofs

Reconstruction success

- · Does the method work with regular sequences of proofs?
- Tested 52 simple induction proofs
- · We can always find a grammar.
- Reconstruction works for 43 proofs.

Case study: schematic CERES

- Analysis of proofs with induction (Cerna, Leitsch, Lolic; ongoing work)
- Requires automatic inductive proof as intermediate step
- Complex induction invariants

$$(Omega(
u)
ightarrow E(o,f(S(a)))) \ \land (Omega(
u)
ightarrow E(o,f(a))) \ \land (Omega(
u)
ightarrow Phi(o)) \ \land \neg (Phi(s(
u)) \land Phi(
u) \land Omega(s(
u)))$$

(automatically found)

Introduction

Proofs and tree grammars

Inductive proving using tree grammars

Evaluation

Conclusion

Future work

- · Modify provers to produce more regular proofs
 - e.g. innermost vs. outermost rewriting
- Regularize existing proofs?
- Improve solution finding phase
 - → constrained Horn clause solvers

Conclusion

- Not yet sufficient for TIP problems
- Alternative challenge:
 - Instead of finding induction formulas, find regular sequences of Herbrand disjunctions