
Tree grammars for induction on inductive data
types modulo equational theories?

Gabriel Ebner and Stefan Hetzl

TU Wien

Abstract. Inductive theorem proving based on tree grammars was in-
troduced in [9]. In this approach, proofs with induction on natural num-
bers are found by generalizing automatically generated proofs of finite
instances on the level of Herbrand disjunctions. We extend this method
to support general inductive data types, and reasoning modulo a back-
ground theory to abstract from irregularities in automatically generated
proofs. We present an experimental implementation of the method and
show that it automatically produces non-analytic induction formulas for
several examples.

1 Introduction

The reasoning principle of induction is essential in mathematics and computer
science, for example to prove properties of recursively defined data types such
as lists or natural numbers. Proofs by induction are typically non-analytic: the
induction formula does not necessarily occur in the problem to be proven. This
non-analyticity makes automated inductive theorem proving a challenging en-
deavor: it requires the prover to synthesize an unknown predicate, the induction
formula. See [18, Section 2] for a more thorough discussion of this aspect of
induction.

Many approaches have been devised to address this problem, including rip-
pling [4], theory exploration [6], term orders on formulas [22,20], heuristic special-
purpose provers [21], in-processing in superposition provers [23,7], and cyclic
proofs [3,19]. These approaches typically synthesize induction formulas by gen-
eralization or exhaustive enumeration.

In this paper, we present an extension of the recently developed approach
using tree grammars [9] and an implementation of this extension. This approach
divides the search for a proof of a universal formula into two distinct phases:
the first phase finds a grammar that describes the quantifier inferences in the
proof with induction based on proofs of small instances. The second phase then
finds the actual induction formula. Non-analyticity is only required in the second
phase, and then only in a limited form since the required formula is quantifier-
free, even if the produced induction formula is quantified. Thus a problem with
quantifiers is reduced to one without.

? Supported by the Vienna Science and Technology Fund (WWTF) project
VRG12-004

2 Gabriel Ebner et al.

The idea of first considering instances of a universal statement in order to
prove this statement is not new. In the context of inductive theorem proving,
this can for example be found in the work [1] on the constructive omega-rule.
Similar ideas also exist in other contexts, for example bounded model check-
ing [2]. What our approach adds to this basic idea is a thorough proof-theoretic
analysis of the relationship between the proofs of the instances and the proof
of the universal statement based on techniques like Herbrand’s theorem, tree
grammars and certain second-order unification problems.

Concretely, we present the following new results in this paper:

– We show how to support inductive data types other than natural numbers,
and work in many-sorted logic.

– We reason modulo an equational background theory, in order to abstract
away from irregularities present in automatically generated proofs and in-
crease the robustness of the prover.

– We implement the algorithm and evaluate this implementation. We demon-
strate that it finds non-analytic induction formulas on real-world examples.

In Sections 2 to 4 we first present the theoretical notions that underpin the
prover: the connection between Herbrand sequents and tree languages as well as
the class of problems that we consider is presented in Section 2, then Section 3
defines the class of proofs with induction that we want to find, and Section 4
introduces the notion of grammar that describes the quantifier inferences in such
a proof with induction.

The rest of the paper is structured in the same order that the prover runs:
Section 5 describes the algorithm used to compute grammars, Section 6 explains
how we find the solution to the grammar—which will become the actual in-
duction formula—and Section 7 constructs the proof with induction. Finally,
in Section 8 we describe an experimental implementation of this algorithm and
another example.

2 Herbrand sequents and tree languages

We consider a many-sorted first-order logic where some sorts are structurally
inductive data types. A structurally inductive data type is a sort ρ with distin-
guished functions c1, . . . , cn called constructors. Each constructor ci has the type
τi,1 → · · · → τi,ni

→ ρ, that is, the arguments have the types τi,1, . . . , τi,ni
and

the return type of the constructor is ρ. It may be the case that τi,j = ρ, then the
index j of such an argument is called a recursive occurrence in the constructor ci.
For simplicity, we do not consider mutually inductive types or other extensions.

We only require that ρ is generated by its constructors: there is no proper
definable subset X of ρ such that we have ci(r1, . . . , rni) ∈ X for all i whenever
rj ∈ X for all recursive occurrences j. This property will be implemented by
the inference rule for induction. Other properties such as the injectivity of the
constructors are explicitly added as assumptions.

Tree grammars for induction 3

The intended semantics is that ρ is the set of finite terms freely generated by
the constructors and values of the other argument types. For example, let the
sort ω be a structurally inductive data type with the two constructors c1 and c2 of
type ω and ω → ω, resp. Then in the intended semantics, ω is interpreted as the
set {c1, c2(c1), c2(c2(c1)), . . . }—a structure isomorphic to the natural numbers.

We aim to prove problems of the following kind:

Definition 1. A simple induction problem is a sequent Γ ` ∀x ϕ(x) where Γ
is a list of universally quantified prenex formulas, ϕ(x) quantifier-free, and the
quantifier x ranges over an inductive sort ρ.

Example 1 (Running example). Consider the inductive type of natural numbers
with the constructor 0ω and sω→ω. Let factω→ω be a function symbol defined as
usual for the factorial function, and qfactω→ω→ω a “quick” tail-recursive imple-
mentation satisfying the following definitions:

Γ = {∀x (s(0) · x = x ∧ x · s(0) = x), (f1)

∀x∀y∀z x · (y · z) = (x · y) · z, (f2)

fact(0) = s(0), (f3)

∀x fact(s(x)) = s(x) · fact(x), (f4)

∀y qfact(y, 0) = y, (f5)

∀x∀y qfact(y, s(x)) = qfact(y · s(x), x)} (f6)

Then the simple induction problem Γ ` ∀x qfact(s(0), x) = fact(x) states the
correctness of the quick implementation.

For simplicity, we only consider the case of a single universal quantifier in
the conclusion. If there is more than one quantifier, we consider the general-
ized problem where all but one quantifier are instantiated with fresh Skolem
constants.

When proving a simple induction problem, we assume an equational back-
ground theory E, consisting of a set of implicitly universally quantified equations
that are contained in Γ . We say that a formula is a tautology if it is valid in propo-
sitional logic, a quasi-tautology if it is valid in propositional logic with equality
(sometimes referred to as QF_UF), and E-tautology if it is valid in propositional
logic with equality modulo E.

Example 2 (continuing Example 1). We use associativity of · and the unit laws
as the equational theory E = {x · (y · z) = (x · y) · z, x · s(0) = x, s(0) · x = x}.

Finite instances Γ ` ϕ(t) of the simple induction problem can typically
be proven without the use of induction, and we can easily obtain proofs using
automated theorem provers. We will now define the class of instances that we
consider.

Definition 2. Let ρ be a in inductive type with constructors c1, . . . , cn. The set
of constructor terms of type ρ is the smallest set of terms containing ci(r1, . . . , rin)

4 Gabriel Ebner et al.

whenever it contains all rj where j is a recursive occurrence in ci. A free con-
structor term is a constructor term where all subterms of a type other than ρ
are pairwise distinct fresh constants.

Example 3. For natural numbers, the terms 0, s(0), s(s(0)) are free constructor
terms, but s(x) is not; all constructor terms are already free constructor terms.
If we consider lists of natural numbers with the constructors nil and cons, then
nil, cons(a1,nil), cons(a1, cons(a2,nil)) are free constructor terms, but cons(x +
x, cons(x, nil)) is a constructor term that is not a free constructor term.

Definition 3. Let Γ ` ∀x ϕ(x) be a simple inductive problem, and t a free
constructor term of type ρ. Then Γ ` ϕ(t) is the instance problem for t.

The relevant part of the proofs that we focus on are the quantifier instances
of the formulas in Γ—these are given by (a special case of) Herbrand’s theorem:

Theorem 1. Let ∀x θ1[x], . . . ,∀x θn[x] ` ϕ be a sequent where θ1, . . . , θn, ϕ are
quantifier-free formulas. Then the sequent is valid in first-order logic modulo
the equational theory E if and only if there exist terms ti,j for 1 ≤ i ≤ n and
1 ≤ j ≤ ki such that θ1[t1,1], . . . , θ1[t1,k1], · · · , θn[tn,1], . . . , θn[tn,kn] ` ϕ is an
E-tautology. This sequent of instances is called a Herbrand sequent.

We encode Herbrand sequents as sets of terms by adding a new function
symbol fi for every formula θi (with the same type), the instance θi[ti,j] is
encoded as the term fi(ti,j). Terms of the form fi(t) for some i and t are called
decodable if t does not contain any of the function symbols fj . A set of terms L
is called decodable if all of its terms are. We say that a decodable set of terms
L is (quasi-/E-)tautological if the corresponding sequent of instances is.

Example 4. In our running example, the instance problem for s(s(0)) is Γ `
qfact(s(0), s(s(0))) = fact(s(s(0))). The following set of terms L decodes to a
Herbrand sequent of the instance problem for s(s(0)):

L = {f3, f4(0), f4(s(0)), f5(s(0) · s(s(0))), f6(0, s(0) · s(s(0))), f6(s(0), s(0))}

Here, f5(s(0) · s(s(0))) decodes to the formula qfact(s(0) · s(s(0)), 0) = s(0) ·
s(s(0)), where f5 refers to the formula with that label in Example 1. Decoding L
gives the following Herbrand sequent; we invite the reader to check for themselves
that it is indeed E-tautological:

fact(0) = s(0), fact(s(0)) = s(0) · fact(0), fact(s(s(0))) = s(s(0)) · fact(s(0)),

qfact(s(0) · s(s(0)), 0) = s(0) · s(s(0)),

qfact(s(0) · s(s(0)), s(0)) = qfact((s(0) · s(s(0))) · s(0), 0),

qfact(s(0), s(s(0)) = qfact(s(0) · s(s(0)), s(0))

` qfact(s(0), s(s(0))) = fact(s(s(0)))

Tree grammars for induction 5

3 Simple induction proofs

To describe the generated class of proofs, we use the sequent calculus LK with
additional rules for the equational background theory and induction. For the
background theory we add E-tautological atomic sequents as axioms. (This im-
plicitly includes reasoning about equality as well.)

E if Γ ` ∆ is atomic and E |=
∧
Γ →

∨
∆

Γ ` ∆
For every inductive sort ρ there is a corresponding structural induction rule.

This rule has one premise for each constructor ci of the inductive type, and for
every recursive argument αjl of the constructor there is an inductive hypothesis.
The variables αj are eigenvariables of the inference, that is, they may not occur
in Γ or ∆.

Γ, ϕ(αj1), . . . , ϕ(αjki
) ` ∆,ϕ(ci(α1, . . . , αmi

)) (for each ci)
indρ

Γ ` ∆,ϕ(t)

We can now define the class of simple induction proofs, these consist of a
single induction followed by a cut. Note that the sequents below (πi) and (πc)
are E-tautologies.

Definition 4. Let ρ be an inductive type, Γ ` ∀xϕ(x) a simple induction prob-
lem, ψ(x,w, y) a quantifier-free formula, Γ1, . . . , Γn, Γc quantifier-free instances
of Γ , and ti,j,k, uk term vectors. Then a simple induction proof is a proof π of
the following form, where π1, . . . , πn, πc are cut-free proofs:

(πi)

Γi, ψ(α, νi,il , ti,il,k), · · · ` ψ(α, ci(νi), γ)

Γ,∀y ψ(α, νi,il , y), · · · ` ∀y ψ(α, ci(νi), y) · · ·
indρ

Γ ` ∀y ψ(α, α, y)

(πc)

Γc, ψ(α, α, uk), · · · ` ϕ(α)

Γ,∀y ψ(α, α, y) ` ϕ(α)
cut

Γ ` ϕ(α)

Γ ` ∀x ϕ(x)

Lemma 1. Let Γ ` ∀x ϕ(x) be a simple induction problem. If there exists a
simple induction proof π of this simple induction problem, then there exist first-
order proofs of all instance problems.

Proof (sketch). By unrolling the induction in a similar way as in Gentzen’s proof
of the consistency of Peano Arithmetic [13,14].

Example 5. A natural simple induction proof of the problem in Example 1 uses
the induction formula ∀yψ(α, ν, y) where ψ(α, ν, y) = (qfact(y, w) = y · fact(w)).
Formally the proof uses the instances and terms listed below. The following
sections will then recover this data from instance proofs: we get the formula
instances and terms from the grammar computed in Section 4, and the induction
formula in Example 11 in Section 6.

Γ1 = {fact(0) = s(0), qfact(0, γ) = γ}
Γ2 = {qfact(γ, s(ν)) = qfact(γ · s(ν), ν), fact(s(ν)) = s(ν) · fact(ν)}
Γc = ∅ t2,1,1 = γ · s(ν) u1 = s(0)

6 Gabriel Ebner et al.

4 Grammars

Just as sets of terms describe the quantifier inferences in proofs of the instance
problems (via their decoding to Herbrand sequents), we use induction grammars
to describe the quantifier inferences in the simple induction proof. The type o is
the type of Booleans, the encoded instances fi(t) also have type o.

Definition 5. An induction grammar G = (τ, α, (νc)c, γ, P) is a quintuple con-
sisting of:

1. the start nonterminal, a nonterminal τ of type o,
2. a nonterminal α whose type ρ is an inductive sort,
3. a family of nonterminal vectors (νc)c, such that for each constructor c of the

inductive sort ρ the term c(νc) is well-typed,
4. a nonterminal vector γ, and
5. a set of vectorial productions P , where each production is of the form:

– τ → t[α, νi, γ] for some i, or
– γ → t[α, νi, γ] for some i.

Example 6. Let ν0 = (), νs = (ν), and γ = γ where γ has the type ω. Then
G = (τ, α, (νc)c, γ, P) is an induction grammar where the set P contains the
following productions:

τ → f3 | f4(ν) | f5(γ) | f6(ν, γ) γ → γ · s(ν) | s(0)

This induction grammar describes the quantifier instances in the simple induc-
tion proof of Example 5.

We will not directly define derivations and the generated language for induc-
tions grammars. Instead we will define an instantiation operation that results in
vectorial totally rigid acyclic tree grammars (VTRATG [8,16]), and define the
language of the induction grammar as the language of the VTRATG obtained
via instantiation.

Definition 6. A VTRATG G = (τ,N, P) is a triple consisting of:

– the start nonterminal τ ,
– a finite sequence N = (τ, α1, . . . , αn) of nonterminal vectors such that the

nonterminals are pairwise distinct,
– and a finite set P of vectorial productions. A vectorial production is a pair
αi → t, where αi ∈ N is a nonterminal vector and t is a vector of terms of
the same types as α containing only nonterminals from αi+1, . . . , αn.

Similar to induction grammars, VTRATGs have a close connection to proofs:
they describe quantifier inferences in proofs with universally quantified cuts but
without induction, and also generate Herbrand sequents. For notational conve-
nience, we may write α0 or α0 instead of τ . The language of a VTRATG is now
defined as the set of all terms that we obtain by treating the productions as
substitutions and applying them to τ :

Tree grammars for induction 7

Definition 7. Let G = (τ,N, P) be a VTRATG. Its language is the following
set of terms: L(G) = {τ [α0\t0] · · · [αn\tn] | α0 → t0 ∈ P, . . . , αn → tn ∈ P}

For terms t, s, we write t E s if t occurs as a subterm of s. The instantiation
operation depends on a constructor term r as parameter, in the same way as the
instance problem Γ ` ϕ(r) uses a constructor term.

Definition 8. Let G = (τ, α, (νc)c, γ, P) be an induction grammar, and r a con-
structor term of the same type as α. The instance grammar I(G, r) = (τ,N, P ′)
is a VTRATG with nonterminal vectors N = {τ}∪{γs | s E r} and productions
P ′ = {p′ | ∃p ∈ P (p p′)}. The instantiation relation p p′ is defined as
follows:

– τ → t[α, νi, γ] τ → t[r, s, γci(s)] for ci(s) E r
– γ → t[α] γs → t[r] for s E r
– γ → t[α, νi, γ] γsj → t[r, s, γci(s)] for ci(s) E r,

where j is a recursive occurrence in ci

Example 7. Let us instantiate the induction grammar in Example 6 with the
parameter s(s(0)). The instance grammar will have the nonterminals τ , γ0, γs(0),
and γs(s(0)). We use the abbreviation p p′1 | p′2 for p p′1 ∧ p p′2. The
productions on the right side are all the productions in the instance grammar
I(G, s(s(0))).

τ → f3 τ → f3

τ → f4(ν) τ → f4(0) | τ → f4(s(0))

τ → f5(γ) τ → f5(γ0) | τ → f5(γs(0)) | τ → f5(γs(s(0)))

τ → f6(ν, γ) τ → f6(0, γs(0)) | τ → f6(s(0), γs(s(0)))

γ → γ · s(ν) γ0 → γs(0) · s(0) | γs(0) → γs(s(0)) · s(s(0))

γ → s(0) γ0 → s(0) | γs(0) → s(0) | γs(s(0)) → s(0)

We can now define the language in terms of the instance grammar. There is
a different language for each constructor term.

Definition 9. Let G = (τ, α, (νc)c, γ, P) be an induction grammar, and t a
constructor term of the same type as α. Then we define the language at the term
t as L(G, t) = L(I(G, t)).

Example 8. The instance grammar in Example 7 produces the following lan-
guage, which is a strict superset of the language in Example 4, and hence decodes
to an E-tautology as well:

L(G, s(s(0))) = {f3, f4(0), f4(s(0)), f5(s(0)), f5(s(0) · s(0)),

f5((s(0) · s(s(0))) · s(0)), f5(s(0)), f5(s(0) · s(s(0))),

f6(0, s(0)), f6(0, s(0) · s(s(0))), f6(s(0), s(0))}

8 Gabriel Ebner et al.

5 A refinement loop to find induction grammars

So far, the definition of induction grammar describes merely a family of tree
languages without any reference to logic. In Section 2, we introduced the func-
tion symbols fi to encode formulas instances in Herbrand sequents. Grammars
that produce such terms whose root function symbol is fi for some i are called
decodable, since they produce decodable languages:

Definition 10. Let G be an induction grammar for the inductive sort ρ, and
Γ ` ∀x ϕ(x) a simple induction problem. Then G is decodable iff for every
production τ → t ∈ G, the right-hand side t is decodable.

Lemma 2. Let G be a decodable induction grammar. Then L(G, t) is decodable
for every constructor term t.

Proof. Every τ -production in the instance grammar I(G, t) has the form τ →
fi(. . .) for some i. Hence all terms in the language of I(G, t) are of the form
fi(. . .) as well.

We implicitly identify terms of the form fi(. . .) with their corresponding
formulas when there is no confusion. For example in the sequent L(G) ` ϕ(t),
the antecedent is the set of all formulas that are encoded as some term in L(G).

The following lemma motivates our search for grammars. If there exists a
simple induction proof, then there exists an induction grammar that generates
Herbrand sequents for the instance problems. In the rest of this section, we will
then reconstruct this grammar from automatically generated Herbrand sequents.

Lemma 3. Let π be a simple induction proof of the simple induction problem
Γ ` ∀xϕ(x). Then there exists an induction grammar G such that L(G, t) decodes
to an E-tautology for every free constructor term t.

Proof (sketch). If we unroll the induction as in Lemma 1, then we get a proof
whose quantifier inferences are described by the VTRATG I(G, t). Since L(I(G, t))
decodes to a tautology, L(G, t) = L(I(G, t)) does as well. See also Proposi-
tion 3.10 in [9].

We want the languages of the induction grammar to describe Herbrand se-
quents for the instance problems. Hence we take automatically generated Her-
brand sequents for a finite set of terms, and find a grammar that generates a
superset. Note that a superset of a Herbrand sequent is still a Herbrand sequent.
We could also require that the grammar generates the input Herbrand sequents
exactly, but this requirement would make it much harder to find grammars.

Grammars for simple induction problems are generated using a refinement
loop. We first obtain Herbrand sequents for a few random instances and find a
covering grammar for the corresponding term sets. We then compute the lan-
guage of the grammar on a different set of random instances, and check if it is
E-tautological since we want the languages to describe Herbrand sequents. When

Tree grammars for induction 9

Algorithm 1 Refinement loop for grammar generation

procedure RefinementLoop(Γ, ϕ, σ, τ)
G← ∅
L← ∅
while i←MinimalCountexample(G,ϕ) do

π ← proof of Γ ` ϕ(i)
L← L ∪ {i 7→ T (π)}
G← FindGrammar(σ, τ ,L)

end while
return G

end procedure
procedure MinimalCountexample(G,ϕ)

for n← 1 . . . 10 do
i← random free constructor term
if L(G, i) ` ϕ(i) is not E-tautological then

i← minimal subterm of i such that L(G, i) ` ϕ(i) is not E-tautological
return i

end if
end for

end procedure

the language is not E-tautological, we repeat the process, adding Herbrand se-
quents for new random instances.

The procedure shown in Algorithm 1 calls automated provers in two places:
first, when checking whether the quantifier-free sequent L(G, i) ` ϕ(i) is E-
tautological. For this problem, we pass the quantifier-free problem together with
the quantified equations for the background theory to an SMT solver with a
resource limit to guarantee termination. This approach is clearly not a complete
decision procedure for E-tautology, but an incomplete solver is acceptable here
since it just causes us to consider more instance proofs.

Secondly, we want to obtain a proof, or more accurately the set of instance
terms of the first-order sequent Γ ` ϕ(i). Here, we pass the sequent together with
the universally quantified equations to a resolution-based first-order prover. The
resulting proof is a proof in pure first-order logic, and will contain instances that
are unnecessary when assuming the background theory E. To remedy this, we
take a minimal subset of the instances that is still E-tautological (as checked by
the SMT-based procedure above).

The rest of this section describes the function FindGrammar, which actually
generates the grammar. Fix an inductive sort ρ and a nonterminal vector γ.

Definition 11. A ρ-indexed term set is a family (Li)i∈I , where I is a finite set
of constructor terms of type ρ, and Li is a finite set of terms for every i ∈ I.

Definition 12. Let (Li)i∈I be an ρ-indexed term set, and G an inductive gram-
mar with inductive type ρ. We say that G covers (Li)i∈I if and only if L(G, i) ⊇
Li for every i ∈ I.

10 Gabriel Ebner et al.

Computational Problem 1 (Parameterized Indexed Termset Cover, PITCP).
Input: Indexed term set (Li)i∈I , set of function symbols Σ, nonterminals α, γ.
Output: Induction grammar G = (τ, α, (νc)c, γ, P) such that G covers (Li)i∈I
and all productions use only function symbols in Σ.

The restriction on the function symbols is necessary because of the fresh
constants we introduce in the instance terms. Recall that for lists, we use instance
terms such as cons(a0,nil) where a0 is a fresh constant. This constant can not
appear in the proof with induction, and hence should not occur in the grammar
either.

The function FindGrammar then solves Computational Problem 1: it re-
turns a covering induction grammar with the specified nonterminals if it exists,
or fails otherwise. It is implemented by a reduction to the MaxSAT optimization
problem based on the reduction for VTRATGs in [8] and similar to [9].1

For types such as the natural numbers, FindGrammar will never fail since
there is always the trivial grammar that simply contains all productions τ → t
where t ∈

⋃
i Li. Due to the restriction on the function symbols, it can fail to

cover an indexed term set with other types, such as lists. Consider γ = () and
Lcons(a0,cons(a1,nil)) = {f1(a0, a1)}, then there exists no covering grammar since
every term in the generated instance language will contain only either a0 or a1,
but not both.

6 Boolean Unification Problem and its solution

After we have computed a grammar G using Algorithm 1, we want to compute
a induction formula for it that will allow us to construct a proof with induction
that contains the quantifier inferences indicated by G. We collect the conditions
for a formula to be a solution in a Boolean unification problem.

Computational Problem 2 (Boolean Unification Problem, BUP).
Input: Formula ϕ(X(y), y) with at most the free second-order variable X
Output: Is there a quantifier-free formula ψ such that ϕ(ψ(y), y) is an E-
tautology?

Such a formula ψ is called a solution to the BUP. This problem is a general-
ization of the UBUP problem defined in [10], where it is shown to be undecidable
in general.

Definition 13. Let G = (τ, α, (νc)c, γ, P) be an induction grammar. We define
the following sets where κ ∈ {τ, γ}, i is the index of a constructor, and j is c or
an index of a constructor:

– P iκ = {t | κ→ t ∈ P ∧ FV(t) ⊆ {α} ∪ νci ∪ γ}
– P cκ = {t | κ→ t ∈ P ∧ FV(t) ⊆ {α}}

1 See the appendix available at https://gebner.org/pdfs/2018-01-29_indmodth_

supplemental.pdf for a detailed description.

https://gebner.org/pdfs/2018-01-29_indmodth_supplemental.pdf
https://gebner.org/pdfs/2018-01-29_indmodth_supplemental.pdf

Tree grammars for induction 11

– Γj = P jτ
– Tj = P jγ if P jγ 6= ∅, otherwise Tj = {γ}

Definition 14. Let G be an induction grammar for a simple induction problem
Γ ` ∀x ϕ(x), then the corresponding BUP consists of the conjunction of the
following sequents:

– Γi,
∧
l

∧
t∈Ti

X(α, νci,l, t) ` X(α, ci(νci), γ) where i is the index of a con-
structor

– Γc,
∧
t∈Tc

X(α, α, t) ` ϕ(α)

A solution is a formula ψ(α, ν, γ) such that all sequents are E-tautological after
substituting X by ψ.

The sequents in Definition 14 are propositionally equivalent to the initial
sequents in the simple induction proof in Definition 4. In the next section, we
will use this fact to construct the proof with induction in Theorem 2.

Example 9. The induction grammar G in Example 6 has the following BUP:

qfact(γ, 0) = γ, fact(0) = s(0),> ` x(α, 0, γ)

fact(0) = s(0), fact(s(ν)) = s(ν) · fact(ν),

qfact(γ, 0) = γ, qfact(γ, s(ν)) = qfact(γ · s(ν), ν),

X(α, ν, s(0)) ∧X(α, ν, γ · s(ν)) ` X(α, s(ν), γ)

fact(0) = s(0), X(α, α, s(0)) ` qfact(s(0), α) = fact(α)

The formula ψ(α, ν, γ) = (qfact(γ, ν) = γ · fact(ν)) is a solution for this BUP.

In general it is undecidable whether such a BUP has a solution or not, see [10].
Moreover there exist grammars G where L(G, t) is tautological for every t, but
the corresponding BUP does not have a solution. However, we will now present
a heuristic algorithm that is often successful. It is based on the corresponding
search algorithm for cut-introduction introduced in [17] that has shown to be
practically effective [15,11]. First, let us give an important restrictions on so-
lutions. All solutions are consequences of a general “canonical formula” that is
implied by the assumptions:

Definition 15. Let G be an induction grammar and s a constructor term, then
the canonical formula C(s, α, γ) is defined by recursion on s, where ROi is the
set of recursive occurrences in ci:

C(α, ci(s), γ) =
∧
Γi ∧

∧
l∈ROi

∧
γ→t∈G

C(α, sl, t)

Example 10. Let G be the induction grammar from Example 6, let us compute
the canonical formula C(α, s(0), γ):

C(α, 0, γ) = qfact(γ, 0) = γ ∧ fact(0) = s(0)

C(α, s(0), γ) = fact(0) = s(0) ∧ fact(s(ν)) = s(ν) · fact(ν) ∧ qfact(γ, 0) = γ

∧ qfact(γ, s(ν)) = qfact(γ · s(ν), ν) ∧ C(α, 0, s(0)) ∧ C(α, 0, γ · s(ν))

12 Gabriel Ebner et al.

We can simplify C(α, 0, s(0)) a bit to obtain the following equivalent formula,
which is incidentally already in conjunctive normal form:

fact(0) = s(0) ∧ fact(s(ν)) = s(ν) · fact(ν) ∧ qfact(γ, 0) = γ ∧
qfact(γ, s(ν)) = qfact(γ · s(ν), ν) ∧
qfact(s(0), 0) = s(0) ∧ qfact(γ · s(ν), 0) = γ · s(ν)

Lemma 4. Let G be an induction grammar and ψ(α, ν, γ) a solution, then
C(α, t, γ)→ ψ(α, t, γ) is an E-tautology for every constructor term t.

Proof. By induction on t.

Our strategy to solve the BUP induced by an induction grammar now con-
sists of finding solutions for a fixed instance t, i.e. first find suitable formulas
ψ(α, t, γ) and then recover ψ(α, ν, γ) by replacing (some occurrences of) t by ν.
We will hence compute consequences χ[α, γ] of the formula C(α, t, γ) as long as
Γc,

∧
u∈Tc

χ(t, t, u) ` φ(t) is E-tautological, and then replace t in the results to
generate candidates for the solution.

Definition 16. Let S be the set of pairs where the first component is a set of
equations, and the second component is a set of clauses (and clauses are sets of
literals). We define the binary relations Be,Bp,Br on S as the smallest relations
containing the following, where σ is a substitution:

(E ∪ {l = r}, C ∪ {C[lσ]})Be (E , C ∪ {C[rσ]})
(E ∪ {l = r}, C ∪ {C[rσ]})Be (E , C ∪ {C[lσ]})

(E , C ∪ {C ∪ {l = r}, D[l]})Bp (E , C ∪ {C ∪D[r]})
(E , C ∪ {C ∪ {l = r}, D[r]})Bp (E , C ∪ {C ∪D[l]})
(E , C ∪ {C ∪ {l}, {¬l} ∪D})Br (E , C ∪ {C ∪D})

The relations Be,Bp,Br are called simplification by forgetful equational rewrit-
ing, resolution, and paramodulation, respectively. We define the relation B =
Be ∪Br ∪Bp as their union.

Starting from C(α, t, γ), we compute consequences by first transforming the
formula into conjunctive normal form C, and compute all consequences C′ such
that (E, C)B∗ (. . . , C′). We skip all branches where Γc,

∧
u∈Tc

C[α\t, γ\u] ` φ(t)
is not E-tautological, since they cannot lead to solutions. For each resulting
C′ we compute all possible generalizations of t by ν, and check whether the
generalization solves the BUP.

Example 11. In order to find a solution for the BUP in Example 9, we start with
C(α, 0, γ) and perform the simplifications as shown in Definition 16, where we
abbreviate A = (x · (y · z) = (x · y) · z):

(E, C) = ({A, s(0) · x = x, x · s(0) = x}, {{qfact(γ, 0) = γ}, {fact(0) = s(0)}})
Be ({A, s(0) · x = x}, {{qfact(γ, 0) = γ · s(0)}, {fact(0) = s(0)}})
Bp ({A, s(0) · x = x}, {{qfact(γ, 0) = γ · fact(0)}})

Tree grammars for induction 13

We now obtain the solution qfact(γ, ν) = γ · fact(ν) by replacing 0 with ν in the
last CNF qfact(γ, 0) = γ · fact(0).

7 Generated proof with induction

To conclude, we show that we can obtain a simple induction proof from a solution
to the BUP. This implies the correctness of the prover.

Theorem 2. Let G be an induction grammar, and ψ(α, ν, γ) a solution for G.
Then there exists a simple induction proof of the corresponding induction problem
(with ψ as the induction formula).

Proof. The simple induction proof uses the instances Γi and Γc as defined in
Definition 13, the terms uk are taken from the set Tc, and the terms ti,j,k are
taken from the set Ti. We now need to find the cut-free proofs πc and πi for
every i. But the sequents we need to prove are almost exactly the sequents
in the BUP (they are propositionally equivalent) and hence E-tautological. By
completeness, we can then find cut-free proofs for all of these E-tautological
sequents.

8 Discussion

The algorithm presented here has been implemented in the open-source GAPT [12]
system for proof transformations, version 2.92. Table 1 shows some of the non-
analytic induction formulas that are automatically generated using this method.

The addition of a background theory was motivated by a prototypical exam-
ples: the tail-recursive factorial function shown in Example 1—we cannot even
find a grammar without a background theory. The running example throughout
this paper shows how the algorithm (as it is implemented) can now automatically
solve it and find a non-analytic induction formula.

Another unexpectedly challenging problem involves a function d that doubles
its argument:

∀x 0 + x = x, ∀x∀y s(x) + y = s(x+ y), d(0) = 0, ∀x d(s(x)) = s(s(d(x)))

` ∀x d(x) = x+ x

This problem has natural instance proofs where we normalize the instance
problem using the equations on the left-hand side of the sequent: that is, the
instance proof performs the calculation d(sn(0)) = · · · = s2n(d(0)) = s2n(0) =
sn(0+sn(0)) = · · · = s(sn−1(0)+sn(0)) = sn(0)+sn(0). The instances required
for this computational proof are captured by the induction grammar with the
following productions:

τ → f1(α) | f2(ν, α) | f3 | f4(ν)

2 available at https://logic.at/gapt

https://logic.at/gapt

14 Gabriel Ebner et al.

Problem Solution Equational theory

x+ (x+ x) = (x+ x) + x ν + (α+ α) = (α+ α) + ν {0 + x = x, x+ 0 = x}
fact(x) = qfact(s(0), x) qfact(γ, ν) = γ · fact(ν) associativity + units
qrev(qrev(x,nil), nil) = x qrev(qrev(ν, γ), nil) = qrev(γ, ν) ∅
S(cnt(x, xs)) = cnt(x, cons(x, xs)) equals(ν, ν) ∅
last(xs++nil) = last(xs) ν++nil = nil ∅

Table 1: Examples of automatically generated non-analytic lemmas

This induction grammar induces the following BUP Φ. With the empty equa-
tional theory E = ∅, the formula d(ν) = ν + ν does not solve this BUP and we
conjecture Φ to be unsolvable:

Φ =

0 + α = α, d(0) = 0 ` X(α, 0)

0 + α = α, s(ν) + α = s(ν + α),
d(0) = 0, d(s(ν)) = s(s(d(ν))), X(α, ν) ` X(α, s(ν))

0 + α = α, d(0) = 0, X(α, α) ` d(α) = α+ α

Conjecture 1. The BUP Φ is unsolvable with the empty equational theory. That
is, there is no quantifier-free formula ψ such that all sequents in Φ[X\ψ] are
quasi-tautologies.

However, with a non-empty equational theory this BUP can be solved by
a quantified formula: if we set E = {0 + x = x, s(x) + y = s(x + y)}, then
∀y ν + s(y) = s(ν + y) ∧ d(ν) = ν + ν is a (quantified) solution for Φ. This
observation suggests that we can effectively extend the class of solvable BUPs
by also considering quantified solution. The algorithm presented in Section 6
only finds quantifier-free solutions, so we need to extend this algorithm as well.

9 Conclusion

We have presented an extension of the method in [9] to support general inductive
data types and reason modulo an equational background theory. The equational
background theory makes it practically much more effective since we can ignore
many irregularities in the automatically generated instance proofs: in Example 1,
the associativity axiom typically has instances that are difficult to generalize. The
method in [9] can not find a grammar that covers these instances, but working
modulo a background theory we can easily find a grammar because the irregular
instances are filtered out.

In general, this does not solve the problem of finding regular families of in-
stance proofs. We get irregular instance proofs for more than half of the problems
in the TIP benchmark suite (tons of inductive problems, see [5])—in the sense
that we cannot find a covering grammar. One potential way to obtain more
regular families of proofs is to modify the search procedure of the automated
theorem prover, for example to use an outermost-first strategy for rewriting,

Tree grammars for induction 15

which sometimes seems beneficial in our experience. Another option would be
to perform a heuristic post-processing to regularize the instance proofs.

Instead of finding more regular families of instance proofs, we could also ex-
tend the grammars so that they can cover more irregular families. The induction
grammars in this paper need to cover the term sets for the instance proofs ex-
actly, without taking the background theory into account. We plan to extend
the grammar generation algorithm so that it generates grammars that cover the
input term sets modulo the background theory—that is, where every term in
the input term set is E-equivalent to a term in the generated language.

We have not spent much effort yet in developing the algorithm to solve the
BUP and there is still much room for improvement. Even without changing the
algorithm drastically, a clever organization of the search that avoids an exhaus-
tive computation of all B-simplifications and generalizations could improve the
performance and success rate. Another important challenge is to generate quanti-
fied solutions as explained in Section 8. We also plan to investigate and integrate
successful methods from model checking as well as loop invariant generation.

Finally, there are many configuration options in this method that are cur-
rently set manually, such as the number of quantifiers in the induction formula or
the equational theory. For quantitative options such as the number of quantifiers,
we intend to implement heuristics and portfolio modes.

References

1. Baker, S., Ireland, A., Smaill, A.: On the Use of the Constructive Omega-Rule
within Automated Deduction. In: Voronkov, A. (ed.) Logic Programming and Au-
tomated Reasoning (LPAR) 1992. Lecture Notes in Computer Science, vol. 624,
pp. 214–225 (1992)

2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, R. (ed.) Tools and Algorithms for Construction and Analysis
of Systems (TACAS). Lecture Notes in Computer Science, vol. 1579, pp. 193–207.
Springer (1999)

3. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) Programming Languages and Systems: 10th Asian
Symposium, APLAS. pp. 350–367. Springer (2012)

4. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge Tracts in Theoretical Computer Science (No.
56) (2005)

5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: Tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
Conferences on Intelligent Computer Mathematics. pp. 333–337 (2015)

6. Claessen, K., Rosén, D., Johansson, M., Smallbone, N.: Automating inductive
proofs using theory exploration. In: 24th International Conference on Automated
Deduction. pp. 392–406 (2013), 15

7. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) 11th International Symposium on Frontiers of Combining Systems, FroCoS.
Lecture Notes in Computer Science, vol. 10483, pp. 172–188 (2017)

16 Gabriel Ebner et al.

8. Eberhard, S., Ebner, G., Hetzl, S.: Algorithmic compression of finite tree languages
by rigid acyclic grammars. ACM Transactions on Computational Logic 18(4), 26:1–
26:20 (Sep 2017)

9. Eberhard, S., Hetzl, S.: Inductive theorem proving based on tree grammars. Annals
of Pure and Applied Logic 166(6), 665–700 (2015)

10. Eberhard, S., Hetzl, S., Weller, D.: Boolean unification with predicates. Journal of
Logic and Computation 27(1), 109–128 (2017)

11. Ebner, G., Hetzl, S., Leitsch, A., Reis, G., Weller, D.: On the generation of quan-
tified lemmas (2017), submitted

12. Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System de-
scription: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds.) International Joint Confer-
ence on Automated Reasoning (IJCAR). Lecture Notes in Computer Science, vol.
9706, pp. 293–301. Springer (2016)

13. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische
Annalen 112, 493–565 (1936)

14. Gentzen, G.: Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlen-
theorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften
4, 19–44 (1938)

15. Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified cuts
in logic with equality. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) International
Joint Conference on Automated Reasoning (IJCAR). Lecture Notes in Computer
Science, vol. 8562, pp. 240–254. Springer (2014)

16. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified
cuts. Theoretical Computer Science 549, 1–16 (2014)

17. Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. In: Logic
for Programming, Artificial Intelligence and Reasoning (LPAR-18). Lecture Notes
in Computer Science, vol. 7180, pp. 228–242. Springer (2012)

18. Hetzl, S., Wong, T.L.: Some observations on the logical foundations of inductive
theorem proving. Logical Methods in Computer Science 13(4) (2017)

19. Kersani, A., Peltier, N.: Combining superposition and induction: A practical real-
ization. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Frontiers of Combin-
ing Systems - 9th International Symposium (FroCoS). Lecture Notes in Computer
Science, vol. 8152, pp. 7–22. Springer (2013)

20. Reddy, U.S.: Term rewriting induction. In: 10th International Conference on Au-
tomated Deduction (CADE). pp. 162–177 (1990)

21. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: An automated prover for prop-
erties of recursive data structures. In: Flanagan, C., König, B. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes
in Computer Science, vol. 7214, pp. 407–421. Springer (2012)

22. Stratulat, S.: A Unified View of Induction Reasoning for First-Order Logic. In:
Turing-100, The Alan Turing Centenary Conference. Manchester, United Kingdom
(Jun 2012)

23. Wand, D., Weidenbach, C.: Automatic induction inside superposition, http://

people.mpi-inf.mpg.de/~dwand/datasup/d.pdf, unpublished

http://people.mpi-inf.mpg.de/~dwand/datasup/d.pdf
http://people.mpi-inf.mpg.de/~dwand/datasup/d.pdf

	Tree grammars for induction on inductive data types modulo equational theories

