Complexity of decision problems on TRATGs

Gabriel Ebner
2017-05-25
TU Wien
Totally rigid acyclic tree grammars

Complexity

Cut-reduction
Terms, not words.

- Start symbol: \(A \)
- Nonterminals: \(A, B, C, D, \ldots \)
- (Acyclic) productions: \(B \rightarrow t[C, D, \ldots] \)

Rigid derivations: \(A[A\{t_1\}][B\{t_2\}][C\{t_3\}] \ldots \)

Language \(L(G) \) consists of all derivable terms
A \rightarrow f(B, B) \mid g(B, B)
B \rightarrow c \mid d
A \rightarrow f(B, B) | g(B, B)
B \rightarrow c | d

L(G) = \{ f(c, c), f(d, d), g(c, c), g(d, d) \}
Totally rigid acyclic tree grammars

Complexity

Cut-reduction
Problem (Membership)
Given a TRATG G and a term t, is $t \in L(G)$?
Membership

Problem (Membership)
Given a TRATG G and a term t, is $t \in L(G)$?

Claim: Membership is NP-complete.

- Derivations of t are polynomial in the size of t and G.

 $A, A[A\backslash s_1], A[A\backslash s_1][B\backslash s_2], \ldots$

 Can check in polynomial time whether such a sequence of terms is a derivation of t in G.

- Hardness: next slide.
The TRATG $\text{Sat}_{n,m}$ generates the satisfiable 3-CNFs with n clauses and m variables:

$$A \rightarrow \text{and}(\text{Clause}_1, \ldots, \text{Clause}_n)$$

$$\text{Clause}_i \rightarrow \text{or}(\text{True}_i, \text{Any}_{i,1}, \text{Any}_{i,2})$$

$$\text{Clause}_i \rightarrow \text{or}(\text{Any}_{i,1}, \text{True}_i, \text{Any}_{i,2})$$

$$\text{Clause}_i \rightarrow \text{or}(\text{Any}_{i,1}, \text{Any}_{i,2}, \text{True}_i)$$

$$\text{Any}_{i,k} \rightarrow x_1 | \neg(x_1) | \cdots | x_m | \neg(x_m) | \text{false} | \text{true}$$

$$\text{True}_i \rightarrow \text{Value}_1 | \cdots | \text{Value}_m | \text{true}$$

$$\text{Value}_j \rightarrow x_j | \neg(x_j)$$
Problem (Containment)

Given TRATGs G_1 and G_2, is $L(G_1) \subseteq L(G_2)$?
Containment

Problem (Containment)
Given TRATGs G_1 and G_2, is $L(G_1) \subseteq L(G_2)$?

Claim: Π_2^P-complete

- In Π_2^P: for every sequence of terms check if it is a derivation of a term t in G_1, and then if $t \in L(G_2)$.
Containment (Π_2^P-hardness)

- Determining the truth of the quantified Boolean formula
 $\forall y_1 \ldots \forall y_k \exists x_1 \ldots \exists x_m f$ is Π_2^P-complete.
- Let f be in 3-CNF with n clauses.

- Is $f\sigma$ satisfiable for any $\sigma: \{y_1, \ldots, y_k\} \rightarrow \{\text{true, false}\}$?
- Is $\{f\sigma : \sigma: \{y_1, \ldots, y_k\} \rightarrow \{\text{true, false}\}\} \subseteq L(\text{Sat}_{n,m})$?
- Left side is generated by a TRATG:

 $A \rightarrow f[y_1 \backslash Y_1, \ldots, y_k \backslash Y_k]$

 $Y_j \rightarrow \text{true} \mid \text{false}$
Problem (Disjointness)
Given TRATGs G_1 and G_2, is $L(G_1) \cap L(G_2) = \emptyset$?

Problem (Equivalence)
Given TRATGs G_1 and G_2, is $L(G_1) = L(G_2)$?

\Rightarrow Disjointness is coNP-complete (via Membership)

\Rightarrow Equivalence is Π_2^P-complete (via Containment)
Totally rigid acyclic tree grammars

Complexity

Cut-reduction
Proofs with Π_1-cuts

Definition (simple proof)
We call a proof π in LK simple iff:

- The end-sequent is prenex Σ_1
- Cuts have at most a single quantifier, which is prenex
- Quantified cuts are immediately followed by a strong quantifier rule
We assign to every simple proof π a TRATG $G(\pi)$. $L(G(\pi))$ contains the formulas in a Herbrand sequent of π

- Nonterminals: eigenvariables from cuts + start symbol A
- Productions $x \rightarrow t$ for weak quantifier inferences on cut formulas:

 $\vdash \varphi(x)$ \hspace{1cm} $\varphi(t) \vdash$ \hspace{1cm} \forall-l

 $\vdash \forall x \varphi(x)$ \hspace{1cm} \forall-r \hspace{1cm} $\vdash \forall x \varphi(x)$ \hspace{1cm} $\vdash \forall x \varphi(x)$ \hspace{1cm} \vdash \hspace{1cm} \vdash \hspace{1cm} \vdash

- Productions $A \rightarrow \varphi(t)$ for instances of formulas end-sequent.
Theorem ([Hetzl and Straßburger 2012])

- For every Gentzen cut-reduction sequence $\pi \leadsto \pi'$, we have $L(G(\pi)) \supseteq L(G(\pi'))$.
- If we did not perform grade reduction on weakenings, then $L(G(\pi)) = L(G(\pi'))$.

Let ne be the non-erasing Gentzen cut-reduction relation, i.e. where we do not reduce weakenings.

We can directly extract tautological Herbrand sequents from ne-NFs.

$\Rightarrow f \in H(\pi^*)$ iff $f \in L(G(\pi))$ (for any ne-NF π^*)
Corresponding problems for simple proofs

Problem (H-membership)
Let π be a simple proof, and f a formula. Is there a $\neq\rightsquigarrow$-NF $\pi \neq\rightsquigarrow \pi^*$ such that $f \in H(\pi^*)$?

Problem (H-containment)
Let π_1, π_2 be simple proofs. Are there $\neq\rightsquigarrow$-NFs $\pi_i \neq\rightsquigarrow \pi_i^*$ such that $H(\pi_1^*) \subseteq H(\pi_2^*)$?

Problem (H-disjointness)
Let π_1, π_2 be simple proofs. Are there $\neq\rightsquigarrow$-NFs $\pi_i \neq\rightsquigarrow \pi_i^*$ such that $H(\pi_1^*) \cap H(\pi_2^*) = \emptyset$?

Problem (H-equivalence)
Let π_1, π_2 be simple proofs. Are there $\neq\rightsquigarrow$-NFs $\pi_i \neq\rightsquigarrow \pi_i^*$, such that $H(\pi_1^*) = H(\pi_2^*)$?
Lemma
There is a formula $\varphi(x)$ such that we can assign to every grammar G a simple proof π_G satisfying $H(\pi_G^*) = \varphi[L(G)]$ for any $\text{ne} \leadsto \text{-NF}$ π_G^*.
Lemma

There is a formula $\varphi(x)$ such that we can assign to every grammar G a simple proof π_G satisfying $H(\pi^*_G) = \varphi[L(G)]$ for any ne-NF π^*_G.

Set $\varphi(x) := L(x) \rightarrow L(x)$.

Let x_0, x_1, \ldots, x_n be the nonterminals of G, and $x_i \rightarrow t_{i,1} | \cdots | t_{i,k_i}$ the productions.

\[
\begin{align*}
\vdash \varphi(t_{0,1}), \ldots, \varphi(t_{0,k_n}) \\
\vdash \exists x \varphi(x) \\
\vdash \varphi(t_{n,1}), \ldots, \varphi(t_{n,k_0}) \\
\vdash \exists x \varphi(x) \\
\vdash \varphi(x_n) \vdash \exists x \varphi(x) \\
\exists x \varphi(x) \vdash \exists x \varphi(x) \\
\vdash \exists x \varphi(x)
\end{align*}
\]
Corresponding complexity results for simple proofs

Problem (H-membership)
Let π be a simple proof, and f a formula. Is there a ne-NF $\pi \xrightarrow{ne} \pi^*$ such that $f \in H(\pi^*)$?

\Rightarrow NP-complete

Problem (H-containment)
Let π_1, π_2 be simple proofs. Are there ne-NFs $\pi_i \xrightarrow{ne} \pi_i^*$ such that $H(\pi_1^*) \subseteq H(\pi_2^*)$?

\Rightarrow Π_2^P-complete
Problem (H-disjointness)
Let π_1, π_2 be simple proofs. Are there $\neq\nsim$-NFs $\pi_i \neq\nsim \pi_i^*$ such that $H(\pi_1^*) \cap H(\pi_2^*) = \emptyset$?

\Rightarrow coNP-complete

Problem (H-equivalence)
Let π_1, π_2 be simple proofs. Are there $\neq\nsim$-NFs $\pi_i \neq\nsim \pi_i^*$, such that $H(\pi_1^*) = H(\pi_2^*)$?

\Rightarrow Π_2^P-complete
Conclusion

• We can analyze cut-reduction using tree grammars.

Future work:

• Given a set of terms T and $n \geq 0$, is there a TRATG G such that $T \subseteq L(G)$ with at most n productions?
 • NP-complete if G has two nonterminals, otherwise unknown.